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Abstract

We present an improved algorithm for finding exact solutions to
Max-Cut and the related binary quadratic programming problem, both
classic problems of combinatorial optimization. The algorithm uses a
branch-(and-cut-)and-bound paradigm, using standard valid inequali-
ties and nonstandard semidefinite bounds. More specifically, we add a
quadratic regularization term to the strengthened semidefinite relax-
ation in order to use a quasi-Newton method to compute the bounds.
The ratio of the tightness of the bounds to the time required to compute
them can be controlled by two real parameters; we show how adjust-
ing these parameters and the set of strengthening inequalities gives us
a very efficient bounding procedure. Embedding our bounding pro-
cedure in a generic branch-and-bound platform, we get a competitive
algorithm: extensive experiments show that our algorithm dominates
the best existing method.
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1 Introduction

Maximizing a quadratic function over the vertices of an hypercube is an
important problem of discrete optimization. As far as formulation is con-
cerned, it is the simplest problem of nonlinear (mixed-)integer programming.
However, this problem is NP-hard [25] and it is considered a computational
challenge to be solved to optimality, even for instances of moderate size.

The Max-Cut problem is one of the most famous NP-hard problems of
this type, as is evidenced by its consideration in such seminal works as [15]
and [11], and in the survey chapter [23] of the recent handbook [2]. Given a
graph G = (V,E) with edge weights wij for ij ∈ E and wij = 0 for ij 6∈ E,
Max-Cut is the problem of finding a bipartition of the nodes V such that
the sum of the weights of the edges across the bipartition is maximized. Let
n = |V | be the cardinality of V ; we can state Max-Cut as

maximize
∑
i≤j

wij

(
1− xixj

2

)
subject to x ∈ {−1, 1}n.

(1)

We can rewrite the problem of Max-Cut as

(MC)
maximize xT Qx
subject to x ∈ {−1, 1}n (2)

where the matrix Q is defined as Q := 1
4L, and L is the Laplacian matrix of

the weighted graph G; see, e.g., [3].
There have been many methods for finding exact solutions of Max-Cut

using semidefinite programming (SDP), including early efforts of [13], the
QCR method [4], and most recently the state-of-the-art Biq Mac method
[27]. This paper builds on this line of research: we present an improved
branch-and-bound algorithm inspired by the above mentioned approaches
and introducing new techniques. As shown by the extensive numerical ex-
periments of this paper, our new algorithm dominates the best existing
methods.

The algorithm uses a branch-and-(cut-and)-bound paradigm, using the
standard valid triangle inequalities together with nonstandard semidefinite
bounds. Bounds of the same type have been used recently in several papers
(for general binary quadratic problems [18, 19] and specifically for the k-
cluster problem [20]). More precisely, we apply here the bounds to the
Max-Cut problem that have been introduced in [19] for general quadratic
optimization problems with quadratic and linear constraints; however, we
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provide a different motivation for these bounds, looking at them from a
quadratic penalty point of view (see Section 3). This reveals the key role of
two positive parameters, α and ε, controlling the tightness of the bound.

Our main contribution is an improved bounding procedure obtained by
reducing the α and ε parameters to zero and iteratively adding triangle
inequality cuts (see Section 4). We show that our bounding procedure con-
verges to the classic reinforced semidefinite bound for the Max-Cut problem,
in an efficient and robust way.

We embed our bounding procedure within a generic branch-and-bound
platform for solving Max-Cut to optimality (see Section 5). We compare
the overall algorithm with the best existing exact resolution method, the
Biq Mac solver [27] on the 328 instances in the Biq Mac Library [29] with
size n < 500. To prove unambiguously that the new bounding procedure is
of high practical value, we make a fair and complete computational study
between the two codes: we have compiled and run both our code and the
Biq Mac code (kindly provided by the authors of Biq Mac) on the same
machine, and have used the same libraries and compilation flags for both
codes.

We finish this section with a remark about our choice to focus on Max-
Cut for presenting our approach. With the help of classic reformulation
techniques, more general binary quadratic optimization problems can be
recast as Max-Cut. We could, for example, add a linear term to the ob-
jective in problem (2), or use variables in {0, 1}. For instance, the binary
homogeneous quadratic optimization problem

minimize xT Qx
subject to x ∈ {0, 1}n (3)

can be reformulated as Max-Cut by considering a change of variable and by
increasing the size of the problem by one; see, e.g., [13, Section 2]. There-
fore, to keep the presentation as simple as possible, we only present our
developments for the Max-Cut problem (1). On the other hand, we consider
both Max-Cut problems and binary quadratic optimization problems in our
numerical experiments.

2 Semidefinite relaxations and Biq Mac

In this section, we introduce notation, briefly recall the classic semidefi-
nite relaxation of Max-Cut (see, e.g., [17, 26]), and provide a sketch of the
Biq Mac method [27], the method to which we will compare.
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Semidefinite formulation and relaxation. The inner product of two
matrices X and Y is defined and denoted by 〈X, Y 〉 = trace(XT Y ). The no-
tation X � 0 means that X is symmetric positive semidefinite. Introducing
the symmetric positive semidefinite rank-one matrix X = xxT , we observe
that we can write the Max-Cut problem as

(MC)
maximize 〈Q,X〉
subject to diag(X) = e, X � 0,

X = xxT ,
(4)

where diag(X) is the vector of the diagonal entries of the matrix X, and
the vector of all ones is represented by e—for simplicity, we allow the size
of the vector e to be determined from the context. The classic semidefinite
relaxation is obtained by dropping the nonconvex rank-one constraint in
problem (4):

(SDP)
maximize 〈Q,X〉
subject to diag(X) = e, X � 0.

(5)

Since the feasible set of problem (5) is strictly larger than that of problem (4),
we can easily see that the optimal value of problem (5) provides an upper
bound on the weight of the optimal cut:

(MC) ≤ (SDP).

There exist some theoretical results quantifying the tightness of the above
inequality (see, in particular, the seminal work [11]). However, in practice,
the ratio of the tightness of the bound to the time needed to compute the
bound is too low to allow this bound be used efficiently to solve the Max-Cut
problem to optimality (see, e.g., [13, 27, 28]).

Strengthening inequalities. In order to improve the performance of the
bound, it is necessary to tighten the bounds by adding valid inequalities to
the SDP relaxation (5). The most popular class of inequalities are the
triangle inequalities, defined for 1 ≤ i < j < k ≤ n by

Xij + Xik + Xjk ≥ −1,

Xij −Xik −Xjk ≥ −1,

−Xij + Xik −Xjk ≥ −1,

−Xij −Xik + Xjk ≥ −1,
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(see [13, Section 4] and [27, Section 3.2]). They represent the fact that for
any 3-cycle of vertices in the graph, we can only have an even number of
edges cut (i.e., either no edges are cut, or exactly two edges are cut). There
are

4
(

n

3

)
= 4

(
n(n− 1)(n− 2)

6

)
triangle inequalities in total. Adding any subset of those valid inequalities
can strengthen the SDP bound (5). In particular, let I be a subset of
the triangle inequalities, and AI : Sn → R|I| be the corresponding linear
operator describing the inequalities in this subset. We define the (SDPI)
problem as

(SDPI)
maximize 〈Q,X〉
subject to diag(X) = e, X � 0,

AI(X) + e ≥ 0.
(6)

Adding such valid constraints gives an improved bound on the value of the
maximum cut:

(MC) ≤ (SDPI) ≤ (SDP). (7)

Note that the dual of problem (6) is given by

minimize eT y + eT z
subject to Q−Diag(y) +A∗I(z) � 0,

z ≥ 0,
(8)

where Diag(y) is the diagonal matrix with the vector y along its diagonal,
and A∗I is the adjoint linear operator of AI .

There is a very large number of triangle inequalities: adding all of them
would make the (SDPI) problem intractable even for moderate values of n.
However, to get the best possible (SDPI) bound, we only need to add the
inequalities that are active at the optimal solution of the problem having all
triangle inequalities, which we call (SDPIall

). Such a set of active inequalities
is obviously unknown, but we will see in Section 4 how we approximate it
(see Algorithm 1 and Theorem 1). For the moment, we just note that in
practice we have to select a (small) number of promising inequalities.

In addition to the triangle inequalities, other cutting planes could be
used to tighten the relaxation: hypermetric inequalities [13], general gap in-
equalities [16], or even a sophisticated choice based on the objective function.
The nature of the valid inequalities has no impact on the theoretical devel-
opments of the next section; we will deal with a general set of inequalities I.
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However, in the computational experiments, as is done in [27], we only use
triangle inequalities as it greatly simplifies the selection of inequalities and
leads to satisfactory results.

Best existing method. Biq Mac [27, 28] is currently the best solver
for solving Max-Cut problems to optimality. This method uses a branch-
and-bound approach and solves the strengthened SDP relaxation (SDPI) in
equation (6) with a nonsmooth optimization algorithm. By dualizing the
triangle inequality constraints in problem (6), the authors of the Biq Mac
solver obtain the nonsmooth convex dual function

θI(z) = eT z + maximize 〈Q +A∗I(z), X〉
subject to diag(X) = e, X � 0,

(9)

where z ∈ R|I|
+ is the dual variable. The value θI(z) provides an upper bound

on the value of the maximum cut for each z ∈ R|I|
+ ; the goal is to minimize

θI(z) to obtain the tightest such upper bound. The two main ingredients of
the bounding procedure of Biq Mac are as follows:

1. the function value θI(z) and a subgradient g ∈ ∂θI(z) are evaluated
by solving the semidefinite programming problem in equation (9) by
a customized primal-dual interior-point method;

2. the nonsmooth convex function θI is minimized by a bundle method [14].

The extensive numerical experiments of [27, 28] show that Biq Mac domi-
nates all other approaches (see the six tested approaches in [27, Section 7]).

3 New family of semidefinite bounds

We present the family of semidefinite bounds that we will use in our branch-
and-bound method for solving Max-Cut to optimality. By construction,
these bounds are less tight than corresponding usual SDP bounds (see Sec-
tion 3.1). On the other hand, Section 3.2 presents their useful properties
that will lead us to the bounding procedure of the next section (Algorithm 1)
whose bounds converge to the usual SDP bounds in the limit.

First we need some more notation. For a real number a, we denote its
nonnegative part by a+ = max{a, 0}. We extend this definition to vectors
as follows: if x ∈ Rn, then (x+)i = (xi)+, for i = 1, . . . , n. For a given
symmetric matrix A, we denote its positive semidefinite part by A+; more
specifically, if the eigendecomposition of A is given by A = U Diag(λ)UT ,
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with the eigenvalues λ ∈ Rn, and orthogonal matrix U ∈ Rn×n, then we
have

A+ = U Diag(λ+)UT .

We denote similarly a−, x−, and A−.

3.1 The new semidefinite bounds

We begin with the following simple fact.

Lemma 1. Let 0 ≤ ε ≤ 1 and X � 0 such that all the diagonal entries Xii

lie in [1− ε, 1 + ε]. Then (1− ε)2n ≤ ‖X‖2F ≤ (1 + ε)2n2.

Proof. Let X � 0 as defined above. We have

‖X‖2F =
∑
ij

X2
ij =

∑
i

X2
ii +

∑
i6=j

X2
ij ≥

∑
i

X2
ii ≥ n(1− ε)2,

Now take (i, j) and extract the submatrix whose determinant is nonnegative

det
(

Xii Xij

Xij Xjj

)
= XiiXjj −X2

ij ≥ 0.

Thus X2
ij ≤ XiiXjj ≤ (1 + ε)2. Also, for each i, we have X2

ii ≤ (1 + ε)2, so
that ‖X‖2F =

∑
ij X2

ij ≤ (1 + ε)2n2.

A particular case of the above result is when X is feasible in (SDPI):
we have diag(X) = e, so we take ε = 0 in Lemma 1 to get

n2 − ‖X‖2F ≥ 0.

Adding a multiple of this nonnegative term to the objective function, we
obtain the regularized problem

(SDPα
I )

maximize 〈Q,X〉+ α
2

(
n2 − ‖X‖2F

)
subject to diag(X) = e, X � 0,

AI(X) ≥ −e.
(10)

Proposition 1. The following holds: for all I and for all α ≥ 0,

(MC) ≤ (SDPI) ≤ (SDPα
I ). (11)
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If α = 0, the second inequality is an equality. If α > 0, the two inequali-
ties are equalities if and only if there exists a rank-one optimal solution of
(SDPI) or (SDPα

I ). Moreover, we have

α′ ≤ α ⇒ (SDPα′
I ) ≤ (SDPα

I ), (12)

and
I ′ ⊆ I ⇒ (SDPα

I′) ≥ (SDPα
I ). (13)

Proof. Inequality (13) clearly holds since the feasible set of (SDPα
I ) is in-

cluded in that of (SDPα
I′). We now prove (12), from which we can deduce

the remaining easily. For any feasible matrix X in problem (10), we have
n2 − ‖X‖2F ≥ 0. Therefore α′ ≤ α yields

〈Q,X〉+ α′(n2 − ‖X‖2F ) ≤ 〈Q,X〉+ α(n2 − ‖X‖2F )

which gives (SDPα′
I ) ≤ (SDPα

I ). Taking now α′ = 0 gives the second in-
equality in (11); the first inequality comes from (7). For the case of equality,
note first from problem (4) that (MC) = (SDPI) if and only if there is a
rank-one optimal solution of (SDPI). Finally, we use a corollary of [18,
Theorem 1] which states that if X � 0 and diag(X) = e, then ‖X‖F = n if
and only if rank(X) = 1, completing the proof.

This proposition says, first, that the bound (SDPα
I ) is strictly weaker

than (SDPI) (except in the very special situation that (SDPI) has a rank-
one optimal solution), and, second, that making α smaller reduces the differ-
ence. We will come back to this second point when describing our algorithm
where we gradually decrease α.

Let us now fix α and I, and let us dualize the affine constraints of
(SDPα

I ). We define the Lagrangian function with respect to the primal
variable X � 0 and the dual variables y ∈ Rn and z ∈ R|I|

+ as

L(X; y, z) := 〈Q,X〉+α

2

(
n2 − ‖X‖2F

)
+ 〈y, e− diag(X)〉+ 〈z, e +AI(X)〉

= 〈Q−Diag(y) +A∗I(z), X〉 − α

2
‖X‖2F + eT y + eT z +

α

2
n2.

The associated dual function is then defined by

Fα
I (y, z) := max

X�0
L(X; y, z). (14)

By weak duality, we have an upper bound on (MC) for given (I, α, y, z) with
α ≥ 0 and z ≥ 0. More precisely, we have

(MC) ≤ (SDPI) ≤ (SDPα
I ) ≤ Fα

I (y, z). (15)

8
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These Fα
I (y, z) for given (I, α, y, z) are the bounds that we are going to use

to solve Max-Cut to optimality; we study them in the next section.

3.2 Mathematical study of the bounds Fα
I (y, z)

This first result gives us a useful explicit expression of the bound Fα
I (y, z)

for α > 0. Let us consider the positive semidefinite matrix

XI(y, z) := [Q−Diag(y) +A∗I(z)]+ . (16)

Proposition 2. Let α > 0 and let I be a set of inequalities. Then, for Fα
I

and XI defined in equations (14) and (16), respectively, we have

Fα
I (y, z) =

1
2α
‖XI(y, z)‖2F + eT y + eT z +

α

2
n2, for all y, z. (17)

Proof. Let M = Q−Diag(y) +A∗I(z) and f(X) = 〈M,X〉− α
2 ‖X‖

2
F . Since

α > 0, we have that f is a concave function. Moreover, maxX�0 f(X) is a
strictly feasible convex optimization problem, so strong duality holds (see,
e.g., [7]); that is,

max
X�0

f(X) = min
S�0

max
X

f(X) + 〈S, X〉 .

Then, from the observation that

min
S�0

max
X

f(X) + 〈S, X〉 = min
S�0

1
2α
‖M + S‖2F =

1
2α
‖[M ]+‖2F ,

the remainder of the proof follows easily.

This proposition makes it clear that the bounds that we consider here
correspond (up to a change of sign and notation) to the ones introduced
in [19] for general 0-1 quadratic optimization problems (see Θ(λ, µ, α) in
Theorem 2 of [19]). The introduction of the bounds we give here is different
though: it is more direct, as it does not rely on the reformulation of the
initial problem with the so-called spherical constraint (see [18]).

Fixing α and I, we obtain the best bound Fα
I (y, z) when (y, z) is an

optimal solution of the problem

(DSDPα
I ) minimize 1

2α ‖XI(y, z)‖2F + eT y + eT z + α
2 n2

subject to y free, z ≥ 0,
(18)

which is the dual problem of (SDPα
I ).

9
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Observe that when α = 0 the dual function has the usual expression

F 0
I (y, z) =

{
eT y + eT z, if Q−Diag(y) +A∗I(z) � 0,

+∞, otherwise,

which leads us back to the dual problem (8). We see that the condition
Q−Diag(y)+A∗I(z) � 0 is exactly XI(y, z) = 0, which opens another view on
the approach we consider. Indeed, from equation (17) the function Fα

I (y, z)
can be viewed as a penalization of the standard dual function F 0

I (y, z). The
parameter α is interpreted as a penalization parameter controlling the loss
in the tightness of the bound.

In view of solving problem (18), the next proposition is crucial.

Proposition 3. Let α > 0. Then the dual function Fα
I is convex and

differentiable, with partial gradients given by

∇yF
α
I (y, z) = e− 1

α
diag (XI(y, z)) ,

∇zF
α
I (y, z) = e +

1
α
AI (XI(y, z)) .

Proof. Let f : Rn → R be defined by f(x) = 1
2 ‖x+‖22. Then f is a convex and

differentiable function invariant under permutations of the entries of x. The
gradient of f is ∇f(x) = x+. From [6, Sect. 5.2], we have that the function
g : Sn → R defined by g(X) = f(λ(X)) is convex and differentiable with
gradient ∇g(X) = U Diag(∇f(λ(X)))UT , where U is any n× n orthogonal
matrix satisfying X = U Diag(λ(X))UT ; thus ∇g(X) = X+. Now note that

Fα
I (y, z) =

1
α

g(Q−Diag(y) +A∗I(z)) + eT y + eT z +
α

2
n2,

so we immediately have that Fα
I is convex and differentiable. Now we simply

apply the chain rule, ∇x [g(Mx)] = M∗∇g(Mx), where M : Rp → Sn is
any linear operator, to get the desired result.

As expected, this proposition is in the same vein as [19, Theorem 2]
establishing differentiability results for the corresponding bounds. The proof
given here is original though, using the differentiability of spectral functions
as a direct argument.

The final proposition considers what could happen to the value of the
dual function Fα

I when reducing the value of α with fixed variables y and z.

10
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Proposition 4. Let 0 ≤ ε ≤ 1 and 0 < α′ < α. Consider (y, z) such that
‖∇yF

α
I (y, z)‖∞ ≤ ε. Then

Fα′
I (y, z) ≤ Fα

I (y, z) +
n2

2
(α− α′)

α′
(
α(1 + ε)2 − α′

)
and

Fα′
I (y, z) ≥ Fα

I (y, z) +
n2

2
(α− α′)

α′

(α

n
(1− ε)2 − α′

)
.

Proof. We have

Fα′
I (y, z)− Fα

I (y, z) =
1
2

(
1
α′
− 1

α

)
‖XI(y, z)‖2F −

n2

2
(α− α′).

We apply Lemma 1 to X = 1
αXI(y, z), which satisfies maxi |Xii − 1| ≤ ε by

Proposition 3 and the assumption ‖∇yF
α
I (y, z)‖∞ ≤ ε. This gives

α2(1− ε)2n ≤ ‖XI(y, z)‖2F ≤ α2(1 + ε)2n2.

We deduce the first desired bound, as

Fα′
I (y, z)− Fα

I (y, z) ≤ 1
2

(
1
α′
− 1

α

)
α2(1 + ε)2n2 − n2

2
(α− α′)

=
n2

2
(α− α′)

α′
(
α(1 + ε)2 − α′

)
.

Using the other inequality, we get in a similar way the other bound.

This result tells us that Fα′
I (y, z) may increase over Fα

I (y, z), but not
much if α − α′ is small enough and α′ is not too small. This gives the
intuition that we should not decrease α too much or too quickly. In our
numerical experiments, we take α′ = α

2 and never take α smaller than 10−5

(see Section 5.2). Later we will present Lemma 3 which will give us a more
precise picture.

3.3 Computing the bounds

For a given set of inequalities I and a tightness level α > 0, the computation
of the value of the bounding function Fα

I and its gradient essentially corre-
sponds to the computation of XI(y, z), which, in turn, reduces to computing
the positive eigenvalues and corresponding eigenvectors of the symmetric
matrix Q − Diag(y) + A∗I(z) (see equation (16)). To compute this partial

11
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eigenvalue decomposition, we use the LAPACK [1] routine DSYEVR—for im-
proved performance we use the Intel Math Kernel Library (MKL) rather
than the Automatically Tuned Linear Algebra Software (ATLAS) package.
When requesting a partial eigenvalue decomposition of a matrix, DSYEVR first
tridiagonalizes the matrix, then finds the positive eigenvalues using bisec-
tion, and finally uses the inverse iteration method to find the corresponding
eigenvectors; see [12] for more information.

In view of the differentiability result (Proposition 3), we can solve prob-
lem (18) with any classic nonlinear optimization algorithm that can han-
dle nonnegativity constraints. Among all possible algorithms and software,
quasi-Newton methods are known to be efficient [5, 22]. In our numerical
experiments, we use the FORTRAN code L-BFGS-B [8, 30] which has been
recently upgraded to version 3.0 [21]. We use the default parameters of
the code. Note, though, that we do an initial scaling of the problem by
normalizing the constraints we dualize.

In summary, the two main ingredients needed to use our bounds in prac-
tice are the following:

1. the function value Fα
I (y, z) and gradient ∇Fα

I (y, z) are evaluated by
computing a single partial eigenvalue decomposition;

2. the smooth convex function Fα
I is minimized by a quasi-Newton method.

Thus, our method is built using reliable and efficient numerical codes: the
eigensolver DSYEVR and the quasi-Newton solver L-BFGS-B.

4 Improved semidefinite bounding procedure

This section presents the bounding procedure using the bounds Fα
I (y, z)

introduced in the previous section, provides a theoretical analysis, and finally
a numerical illustration.

4.1 Description of the bounding procedure

We have three ways to improve the tightness of the bound Fα
I (y, z): adding

triangle inequalities, reducing the parameter α, or reducing the tolerance ε
in the stopping criteria of the quasi-Newton method:

1. Adding inequalities. In view of (13), we can improve the bound by
adding violated (triangle) inequalities to I; that is,

find i such that Ai(X) + 1 < 0

12
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where X = 1
αXI(y, z). Recall that we only need to add the triangle

inequalities that are active at the optimal solution that satisfies all
triangle inequalities. We do this by adding a predefined number of the
most violated inequalities each time to improve the bound as quickly
as possible. We add just a few inequalities at the beginning when
we are far from the optimal solution, then we add more inequalities
when we are closer to this optimal solution. Moreover, we borrow an
idea from the description of Biq Mac in [28] where, instead of using
the current iterate Xk to find violated triangle inequalities, a convex
combination of the current iterate with the previous iterate is used:
Xtest = λXk−1 +(1−λ)Xk. However, while Biq Mac uses λ = 0.9, we
take the opposite strategy and use λ = 0.2 since we found this works
well in our code.

2. Reducing α. We can reduce α > 0 and solve problem (18) again,
warm-starting with the current (y, z). In practice, we reduce α if the
number of violated triangle inequalities is small for the current value
of α. In other words, our strategy consists of changing the target when
we can no longer make good progress by adding inequalities.

3. Reducing ε. We can request more accuracy from the quasi-Newton
method by reducing the tolerance ε > 0 in the stopping test:

max
{
‖∇yF

α
I (y, z)‖∞ , ‖[∇zF

α
I (y, z)]−‖∞

}
< ε.

Note that the expressions of the gradients of Fα
I (Proposition 3) gives

max

{∥∥∥∥diag
(

1
α

XI(y, z)
)
− e

∥∥∥∥
∞

,

∥∥∥∥[
AI

(
1
α

XI(y, z)
)

+ e

]
−

∥∥∥∥
∞

}
< ε.

How we control the decrease of ε and α, and how we add inequalities, is
important for the overall efficiency. Our algorithm, described formally in
Algorithm 1, can be viewed as a succession of cutting plane methods (alter-
nating adding cuts and reducing α and ε). We give details in Section 5.1 on
the parameters we chose to efficiently interlace the decrease of α and ε with
the management of the set of enforced inequalities.
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Algorithm 1 Improved semidefinite bounding algorithm
Input: Scalars α1 > 0, ε1 > 0, and 0 < ScaleAlpha, ScaleEps < 1.

y0 ← 0 ∈ Rn {initial y variables} and z0 ← ∅ {initial z variables}
I0 ← ∅ {initial set of triangle inequalities I}
for k = 1, 2, . . . do

Starting from (yk−1, zk−1), use a descent method (e.g., a quasi-Newton
method) to compute (yk, ẑk) such that

max
{∥∥diag(Xk)− e

∥∥
∞,

∥∥[
AIk−1

(Xk) + e
]
−
∥∥
∞

}
< εk,

where Xk ← 1
αk

XIk−1
(yk, ẑk).

Update the bound: Fk ← Fαk
Ik−1

(yk, ẑk).
Remove triangle inequalities that are not active:

I−k−1 ← {i ∈ Ik−1 : (ẑk)i = 0 and Ai(Xk) + 1 > εk } .

Add triangle inequalities that are violated:

Let Xtest
k ← λXk−1 + (1 − λ)Xk (taking X0 = X1) and

let i1, . . . , i` be the indices i 6∈ Ik−1 such that Ai(Xtest
k ) +

1 ≤ ViolTolk, where ViolTolk ≤ 0, ordered such that
Ai1(X

test
k ) ≤ · · · ≤ Ai`(X

test
k ). Let

I+
k−1 ← {i1, . . . , iK} , where K = min{`, MaxIneqAddedk}.

Update set of inequalities: Ik ←
(
Ik−1 \ I−k−1

)
∪ I+

k−1.
Initialize multipliers for added inequalities to zero:

for each i ∈ Ik, (zk)i ←

{
(ẑk)i, if i ∈ Ik−1,

0, if i 6∈ Ik−1.

if the number of inequalities added, K, is less than MinIneqViol then
αk+1 ← ScaleAlpha · αk, εk+1 ← ScaleEps · εk

else
αk+1 ← αk, εk+1 ← εk

end if
end for
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4.2 Convergence of the bounding procedure

We now analyze Algorithm 1, starting with the case when the set of triangle
inequalities I is fixed.

Lemma 2. Let I be a (fixed) set of valid triangle inequalities. Consider five
sequences indexed by k: αk > 0, εk > 0, yk ∈ Rn, zk ∈ R|I|

+ , Xk � 0 such
that

max
{∥∥∇yF

αk
I (yk, zk)

∥∥
∞ ,

∥∥[∇zF
αk
I (yk, zk)]−

∥∥
∞

}
< εk, (19)

and Xk := XI(yk, zk)/αk. If both (αk)k and (εk)k tend to 0, and if the
sequence (Xk, yk, zk)k converges, then its limit is a primal-dual solution of
(SDPI), and

lim
k→+∞

Fαk
I (yk, zk) = (SDPI). (20)

Proof. First note that the feasible set of problem (6) is closed and bounded
(by n), so there exists a primal optimal solution. Moreover, problem (6)
satisfies Slater’s constraint qualification: the identity matrix satisfies the
affine constraints (equalities and inequalities) and strictly satisfies the posi-
tive semidefinite constraint. Therefore (see, e.g., [7]), there is no duality gap
between between primal-dual problems (6) and (8), and there exists a dual
optimal solution. Thus the following conditions are necessary and sufficient
for optimality of (X, S, y, z):

Q−Diag(y) +A∗I(z) = S (21)
〈X, S〉 = 0, X � 0, S � 0 (22)
diag(X) = e, AI(X) + e ≥ 0 (23)
zT (AI(X) + e) = 0, z ≥ 0 (24)

Assume that (Xk, yk, zk)k converges to (X̄, ȳ, z̄). Let us show that the
triple satisfies the above optimality conditions. By construction of Xk,

Q−Diag(yk) +A∗I(zk) = αkXk + Sk, for all k,

where Sk := [Q−Diag(yk) +A∗I(zk)]−. The sequence (Sk)k converges to

S̄ := [Q−Diag(ȳ) +A∗I(z̄)]− ,

by continuity of the operator [·]−. Passing to the limit shows that (X̄, S̄, ȳ, z̄)
satisfies (21) since αk vanishes. By construction we also have 〈Sk, Xk〉 = 0,
Xk � 0, and Sk � 0. Since the cones of positive semidefinite and negative
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semidefinite matrices are closed, passing to the limit, we get that X̄ and S̄
satisfy (22).

By Proposition 3, condition (19) can be written as

max {‖diag(Xk)− e‖∞ , ‖[AI(Xk) + e]−‖∞} < εk.

Passing to the limit we have that X̄ satisfies (23). By assumption, we have
that zk ≥ 0 for all k, so we also have that z̄ ≥ 0. Finally, we write

|zT
k (AI(Xk) + e)| ≤ ‖zk‖1 ‖AI(Xk) + e‖∞ < ‖zk‖1 εk.

Since εk vanishes, at the limit, we have that z̄ and X̄ satisfy (24). Altogether,
this shows that (X̄, ȳ, z̄) is indeed a primal-dual solution.

Finally (17) yields

Fαk
I (yk, zk) = eT yk + eT zk + αk(‖Xk‖2 + n2)/2.

Therefore we have limk→+∞ Fαk
I (yk, zk) = eT ȳ + eT z̄. Since there is no

duality gap for the primal-dual problems (6) and (8), we conclude that (20)
holds.

The parameters α and ε control the level of tightness of the bound in
that smaller values give tighter upper bounds. Furthermore, we can reach
the usual SDP bound, (SDPI), in the limit as α and ε both approach zero.
In practice, we interlace the decrease of these control parameters with the
process of adding violated inequalities; the overall convergence follows from
the next lemma.

Lemma 3. Let the sequence (αk, εk, Xk, yk, ẑk, zk, Ik, Fk)k be generated by
Algorithm 1. Then the following holds:

(i) For all k = 1, 2, . . ., we have:

Xk =
1
αk

XIk
(yk, zk) and Fk = Fαk

Ik
(yk, zk).

(ii) There exists γ > 0 such that:

Fk+` ≤ Fk + γαk, for all k, `.

(iii) If αk → 0, then (Fk)k is a convergent sequence.
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Proof. The first item follows from the observation that, based on the def-
inition of Ik and zk in Algorithm 1, we have A∗Ik

(zk) = A∗Ik−1
(ẑk) and

eT zk = eT ẑk; this follows from the fact that inequalities are removed only if
they have a zero multiplier (ẑk)i, and multipliers for added inequalities are
initialized with (zk)i = 0.

For the second item, first let r := ScaleAlpha−1 > 1. Since

‖∇yF
αk
Ik−1

(yk, ẑk)‖∞ < εk,

by Proposition 4 we have

F
αk+1

Ik−1
(yk, ẑk) ≤ Fαk

Ik−1
(yk, ẑk)+

n2

2
(αk − αk+1)

αk+1

(
αk(1 + εk)2 − αk+1

)
. (25)

From the previous item, we have

Fk+1 = F
αk+1

Ik
(yk+1, ẑk+1) ≤ F

αk+1

Ik
(yk, zk) = F

αk+1

Ik−1
(yk, ẑk),

where the inequality follows from the fact that (yk+1, ẑk+1) is generated using
a descent method starting from (yk, zk). Therefore, if αk+1 = ScaleAlpha ·
αk = r−1αk, by inequality (25) we have

Fk+1 ≤ Fk +
n2

2
(r − 1)

(
(1 + εk)2 − r−1

)
αk.

Since 0 < ScaleEps < 1, we have εk ≤ ε1, for all k. Letting

δ := n2(r − 1)
(
(1 + ε1)2 − r−1

)
/2 > 0,

we have that {
Fk+1 ≤ Fk + δαk, if αk+1 = ScaleAlpha · αk,

Fk+1 ≤ Fk, if αk+1 = αk,
(26)

for all k. Let ` and k be given, and let k1, . . . , kp be the p indices k ≤ ki <
k + ` such that αki+1 = ScaleAlpha · αki

. Then, from repeated application
of the inequalities (26), we obtain

Fk+` ≤ Fk + δ
(
αk1 + αk2 + · · ·+ αkp

)
= Fk + δ

(
αk + r−1αk + · · ·+ r−(p−1)αk

)
= Fk + δ

(
1 +

1
r

+ · · ·+ 1
rp−1

)
αk

≤ Fk + δ

(
r

r − 1

)
αk.
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Letting γ := δr
r−1 > 0, we obtain the desired result.

For the third item, suppose αk → 0. Then, by the previous item, we can
conclude that

lim sup
k→+∞

Fk ≤ lim inf
k→+∞

Fk,

so the sequence (Fk)k converges.

Theorem 1. Let the sequence (αk, εk, Xk, yk, ẑk, zk, Ik, Fk)k be generated
by Algorithm 1. If (αk)k and (εk)k both converge to zero, and (X̄, ȳ, z̄, Ī) is
an accumulation point of the sequence (Xk, yk, zk, Ik)k, then (X̄, ȳ, z̄) is a
primal-dual solution of (SDPĪ), and the sequence Fk converges to the classic
semidefinite bound:

lim
k→+∞

Fαk
Ik

(yk, zk) = (SDPĪ). (27)

Proof. Take a subsequence of (Xk, yk, zk, Ik)k that converges to (X̄, ȳ, z̄, Ī).
Since the Ik are finite sets, the convergence of a subsequence to Ī means that
there are infinitely many indexes ki of this subsequence such that Iki

= Ī.
Observe now that the sequence (Xki

, yki
, zki

)i satisfies the assumptions of
Lemma 2 with I = Ī. Therefore,

lim
i→+∞

Fki
= lim

i→+∞
F

αki
Iki

(yki
, zki

) = lim
i→+∞

F
αki

Ī (yki
, zki

) = (SDPĪ).

Since αk → 0, from Lemma 3 we also have that the entire sequence (Fk)k

converges, so we conclude that limk→+∞ Fk = (SDPĪ).

We now have a key observation about our bounding procedure Algo-
rithm 1. Although, by Proposition 1, the bounds Fα

I (y, z), for α > 0, are
weaker than the usual SDP bound (SDPI), we have, by Theorem 1, that we
can get as close as we like using Algorithm 1.

At the limit, the quality of the bounds is only governed by the selection
of promising inequalities in Ik. Looking at a special case, we give some intu-
ition to the fact that the selection of Algorithm 1 approximates an “optimal”
set of inequalities I: enforcing the inequalities in I would in fact enforce all
the inequalities.

Corollary 1. Let the assumptions of Theorem 1 hold. If the sequence
(Xk, yk, zk, Ik)k converges to (X̄, ȳ, z̄, Ī) and if ViolTolk → 0, then (SDPĪ)
is equal to the semidefinite bound (SDPIall

) with all the inequalities, and
(X̄, ȳ, z̃) is a primal-dual solution of (SDPIall

), where z̃ ∈ R4(n
3) is obtained

from z̄ by expanding with zeros the entries that are not indexed by Ī.
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Proof. We use the assumption of the convergence of the whole sequence.
For k large enough, the set Ik is equal to Ī. Thus no more inequalities are
added at iteration k, which means

Ai(Xtest
k ) + 1 ≥ ViolTolk, for all i 6∈ Ī.

Since (Xtest
k )k also converges to X̄, we pass to the limit to get Ai(X̄)+1 ≥ 0

for all i 6∈ Ī. We also know by Theorem 1 that X̄ is optimal, hence feasible,
for (SDPĪ). Therefore we have that

Ai(X̄) + 1 ≥ 0, for any inequality i, (28)

and that X̄ is in fact feasible for (SDPIall
). We observe now (X̄, ȳ, z̃) satisfies

the optimality conditions of (SDPIall
) (i.e., conditions (21-24) from the proof

of Lemma 2). Indeed (28) implies that (23) is satisfied for X = X̄ and
I = Iall, and so are (21) and (24) by construction of z̃. Thus we have
(SDPI) = (SDPIall

) and the rest of the proof follows from Theorem 1.

4.3 Numerical illustration of the bounding procedure

This section presents a numerical comparison of our bounding procedure Al-
gorithm 1 with the one of Biq Mac [27]. We take one problem of the Biq Mac
Library [29]—specifically Beasley bqp250.6, the problem highlighted in [27,
Figure 1]—and we plot the convergence curve for the two bounding pro-
cedures in Figure 1. The code for each solver was compiled on the same
machine using the same numerical libraries.

This plot is typical of the behaviour of the two solvers: our bounding
procedure has a slower start since we take a large value of α at the beginning,
then the convergence curves intersect, after which we see that our bounding
procedure is able to compute good bounds in less time than that of Biq Mac.
Therefore, the computing time needed for our solver to get to a zone of
“useful bounds” is smaller than the one used by Biq Mac—this is crucial for
the relative efficiency of our branch-and-bound method and is the reason for
the good numerical results of the next section.

In Figure 1, one can see large decreases in the value of the dual function
on the curve for our bounding procedure: this corresponds to the iterations
when α is decreased. We also note that our bounding procedure is able
to attain a tighter bound than the one of Biq Mac. This may be due to a
combination of: a different selection of inequalities, and the slow convergence
of the bundle method near the end of the solving process.
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Figure 1: Comparison of the bounding procedure of Biq Mac [27] and our
bounding procedure Algorithm 1 on the Beasley bqp250.6 problem. The
behaviour shown here is typical.

5 Solving Max-Cut to optimality

In this section, we describe our implementation of a branch-and-bound
method for solving Max-Cut to optimality. The scheme of our algorithm
is simple and follows the usual branch-and(-cut-and)-bound paradigm—the
novelty of our approach is essentially our bounding procedure that we de-
scribed in Algorithm 1. Finally, we provide a complete numerical comparison
to the leading Biq Mac solver [27].

5.1 Branch-and-bound implementation

While Biq Mac uses a dedicated code, we embed our bounding procedure in a
generic code: we use the BOB Branch & Bound platform [9], which provides
an easy and flexible way to implement a branch-and-bound algorithm. The
BOB platform only requires the user to implement the following: (1) a
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bounding procedure, (2) a method for generating a feasible solution, and
(3) a method for generating subproblems. Here we give some details about
these points.

We have already described our bounding procedure in Section 4, but
we would like to mention here how we decide when to stop our bounding
procedure within the branch-and-bound method. Suppose the value of the
best-known solution for the current subproblem is given by β. If we are able
to compute a bound that is below β, we can stop our bounding procedure
and prune this subproblem from the branch-and-bound tree. Indeed, in our
method, stopping the run of the quasi-Newton solver at any time gives the
valid bound Fαk

Ik
(yk, zk). Similarly, Biq Mac can stop their feasible interior-

point method at any time and get a valid bound; this is because Biq Mac
uses the following form of their dual function

θI(z) = eT z + minimize eT y
subject to Diag(y) � Q +A∗I(z),

implying that (MC) ≤ θI(z) ≤ eT z + eT y, for any feasible vector y.
We can also stop the bounding procedure when we detect that we will not

be able to reach the value of β in a reasonable time. Biq Mac estimates the
time to reach β using a linear approximation to the time-bound curve [28].
In our method, we fit a hyperbolic function to the time-bound curve, given
its hyperbolic nature that can be observed in Figure 1. If this hyperbola
has a horizontal asymptote that is far above the value of β, we terminate
the bounding procedure and add the current subproblem, together with its
computed bound and fractional solution, to the list of subproblems on which
we will branch. We also terminate the bounding procedure if the difference
between consecutive bounds, Fk−1−Fk, is less than one, we are still at least
two away from the lower bound β, and αk is very small (on the order of
10−4).

In all subproblems in the branch-and-bound tree, except the root prob-
lem, we wait until the termination of the bounding procedure to compute a
feasible solution (upper-bound) using the Goemans-Williamson (GW) ran-
dom hyperplane algorithm [11] then local swapping, as is done in Biq Mac.
However, we do not use the technique used in Biq Mac of repeatedly running
the GW algorithm (while progress is still made) on a matrix obtained by
shifting the current matrix X in the direction x̃x̃T , where x̃ ∈ {−1, 1}n is
the best cut found so far. In the root problem, to get an upper-bound β,
we run the GW procedure up to two times during the bounding procedure
—this value of β is then used to inform us when we should terminate the
bounding procedure in the root problem.
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For generating subproblems, Biq Mac considers two branching strategies:
“easy first” (R2), and “difficult first” (R3); for details, see [27]. We use two
different but similar “easy first” and “difficult first” branching strategies
in the {0, 1}-model: we branch on the variable in the first row/column of
X with fractional value that is furthest from, or closest to, 1

2 , respectively.
For the sake of simplicity, we also refer to our “easy first” and “difficult
first” branching strategies as (R2) and (R3), respectively. In our numerical
results, we compare our method using (R2) branching and our method using
(R3) branching to Biq Mac using (R2) branching and Biq Mac using (R3)
branching—in total, we compare four methods.

Finally, we note that we have used a best-first exploration strategy in
that we always take the subproblem from the current list of subproblems
that has the greatest computed bound.

5.2 Description of the numerical tests

Comparison. There exist several efficient methods for solving Max-Cut
and binary quadratic programming problems, such as [24] and [4]. However,
the numerical tests of [27] show that the results of the other methods are
dominated by Biq Mac, so we only compare our solution method to Biq Mac.

Test problems. We use the test problems in the Biq Mac Library [29],
which consists of both Max-Cut problems and binary quadratic optimization
problems. Some are randomly generated instances, others come from a
statistical physics application. We refer to [27, Section 6] for a description
of the data set. Since solving the instances in the Biq Mac Library with
n = 500 is beyond the reach of current solvers (including Biq Mac and our
method) we restrict our tests to the 328 instances in the Biq Mac Library
with n < 500.

Machine. In our tests we used a Dell T-7500 (using a single core) with
4 GB of memory running the Linux operating system. We implemented our
algorithm in C / FORTRAN and have used the Intel Math Kernel Library
(MKL) for the eigenvalue computations. We have compiled and ran both
our code and the Biq Mac code (kindly provided by the authors) on the same
machine, and have used the same libraries (i.e., MKL) and compilation flags
for both codes.

Parameters. We used Biq Mac with its default parameters, except for
using both the non-default (R2) and the default (R3) branching strategies;
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additionally, we changed the time limit to 100 hours. We used the following
values for Algorithm 1 in our tests:

1. Reducing α. We use ScaleAlpha = 0.5 and start with α1 = 10;
however, if no inequalities are added after the first iteration in the
root problem (i.e., |I1| = 0 or |I2| = 0), we start with a smaller α1.
We continue to reduce αk until the minimum value of αk = 10−5.

2. Reducing ε. With (R3) branching, we use ε1 = 0.08 and ScaleEps =
0.93, with a minimum value of εk = 0.05. When using (R2) branching,
we found that it is better to be less aggressive in decreasing ε, so we
take ε1 = 0.2 and ScaleEps = 0.95, with a minimum value of εk = 0.1.

3. Inequalities. We have used MaxIneqAddedk = 20k (resp. 30k) and
MinIneqViol = 30 (resp. 60) for n < 150 (resp. for n ≥ 150). This
means that we usually add less inequalities than Biq Mac.

Performance profiles. We plot the results using performance profiles [10],
that we briefly describe here. Let P be the set of problems used to bench-
mark the solvers. For each problem p ∈ P, we define tmin

p as the minimum
time required to solve p over all the solvers. Then, for each solver, we
consider the performance profile function θ, which is defined as

θ(τ) =
1
|P|

∣∣{p ∈ P : tp ≤ τtmin
p

}∣∣ , for τ ≥ 1, (29)

where tp is the time required for the solver to solve problem p. The function
θ is therefore a cumulative distribution function, and θ(τ) represents the
probability of the solver to solve a problem from P within a multiple τ of
the minimum time required by all solvers considered.

5.3 Computational results

We report aggregated results from the 328 test-problems and almost 1600
hours of computing time: Figure 2 gives the performance profile, Table 1
counts the number of times a solver attains the minimum solution time, and
Table 2 summarizes the computing times. For the full tables of numerical
results, see Appendix A.

Compared to Biq Mac, our algorithm performs well for a large part of
the problems: 241 out of the 328 problems are solved strictly faster by using
our solver, which is around 75% of the test-problems. When considering
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Table 1: The number of times a solver attains the minimum solution time
for each set of problems from the Biq Mac Library [29] having n < 500.

Problem sets
Biq Mac Our method

(R2) (R3) (R2) (R3)

bqp50 (Table 3) 6/10 6/10 0/10 4/10
bqp100 (Table 4) 5/10 5/10 1/10 4/10
bqp250 (Table 5) 0/10 0/10 1/10 9/10

gkaa (Table 6) 5/8 5/8 2/8 2/8
gkab (Table 7) 0/10 0/10 4/10 6/10
gkac (Table 8) 5/7 5/7 2/7 0/7
gkad (Table 9) 1/10 1/10 4/10 5/10

gkae (Table 10) 0/5 0/5 3/5 2/5

be100.d100 (Table 11) 0/10 2/10 3/10 5/10
be120.d30 (Table 12) 2/10 2/10 2/10 6/10
be120.d80 (Table 13) 2/10 0/10 1/10 7/10
be150.d30 (Table 14) 1/10 0/10 3/10 6/10
be150.d80 (Table 15) 6/10 0/10 3/10 1/10
be200.d30 (Table 16) 0/10 0/10 9/10 1/10
be200.d80 (Table 17) 1/10 0/10 8/10 1/10
be250.d10 (Table 18) 0/10 0/10 2/10 8/10

g05.n60 (Table 19) 3/10 5/10 1/10 3/10
g05.n80 (Table 20) 3/10 0/10 2/10 5/10

g05.n100 (Table 21) 5/10 0/10 0/10 5/10

pm1s80.d090 (Table 22) 7/10 7/10 1/10 2/10
pm1s100.d010 (Table 23) 2/10 1/10 1/10 7/10
pm1d80.d090 (Table 24) 2/10 0/10 4/10 4/10

pm1d100.d090 (Table 25) 1/10 0/10 1/10 8/10

w100.d010 (Table 26) 2/10 3/10 5/10 1/10
w100.d050 (Table 27) 3/10 0/10 3/10 4/10
w100.d090 (Table 28) 4/10 0/10 2/10 4/10

pw100.d010 (Table 29) 1/10 1/10 2/10 7/10
pw100.d050 (Table 30) 4/10 0/10 1/10 5/10
pw100.d090 (Table 31) 0/10 0/10 3/10 7/10

ising100 (Table 32) 0/6 0/6 3/6 3/6
ising150 (Table 33) 0/6 0/6 1/6 5/6
ising200 (Table 34) 0/6 0/6 2/6 4/6
ising250 (Table 35) 0/6 0/6 4/6 2/6
ising300 (Table 36) 0/6 0/6 2/6 4/6

t2g10 (Table 37) 3/3 3/3 0/3 0/3
t2g15 (Table 38) 0/3 0/3 3/3 0/3
t2g20 (Table 39) 0/3 0/3 1/3 2/3

t3g5 (Table 40) 3/3 3/3 0/3 0/3
t3g6 (Table 41) 0/3 1/3 2/3 0/3
t3g7 (Table 42) 2/3 2/3 0/3 1/3

Total for each method: 79/328 52/328 92/328 150/328

Grand total: 87/328 (27%) 242/328 (74%)
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Table 2: Minimum / mean / maximum CPU time (s) for Biq Mac and our
method to solve problems in the Biq Mac Library [29].

Problem sets
Biq Mac Our method

Min Mean Max Min Mean Max

bqp50 0.11 0.70 5.03 0.17 0.22 0.26
bqp100 0.92 3.77 22.29 1.40 2.58 11.12
bqp250 526.18 7052.28 54277.92 47.13 1736.11 14714.12

gkaa 0.06 0.55 1.37 0.06 0.65 2.11
gkab 1.11 1650.88 10719.44 0.10 787.00 5104.21
gkac 0.16 0.62 1.02 0.13 0.85 1.95
gkad 1.53 32.98 79.33 1.63 18.06 55.72
gkae 126.98 6116.31 25721.41 21.77 3897.82 16654.15

be100.d100 16.70 42.88 108.69 3.79 33.51 114.88
be120.d30 4.52 32.64 113.27 5.01 17.68 76.30
be120.d80 39.12 146.09 211.55 32.60 142.54 268.07
be150.d30 39.21 367.92 844.33 7.74 285.44 767.08
be150.d80 441.62 506.15 561.98 363.55 500.04 608.20
be200.d30 1079.71 8223.51 43850.81 102.61 4852.01 32612.82
be200.d80 1210.52 10692.92 35247.12 596.22 6759.69 25518.98
be250.d10 328.64 2437.95 3754.20 27.98 409.71 905.98

g05.n60 0.26 5.74 13.27 0.67 7.42 24.84
g05.n80 6.39 63.09 274.50 2.80 63.10 296.10

g05.n100 93.45 803.88 4197.29 96.05 721.25 3382.27

pm1s80.d090 0.58 4.76 23.96 0.96 3.92 13.40
pm1s100.d010 1.15 49.87 130.28 1.85 34.70 88.48
pm1d80.d090 24.56 71.90 212.47 13.74 56.31 138.19

pm1d100.d090 106.24 945.40 2868.06 56.94 620.76 1800.63

w100.d010 1.37 23.15 131.45 1.71 23.47 152.09
w100.d050 109.99 563.27 1152.49 81.02 475.32 1061.46
w100.d090 38.67 836.25 2945.89 26.50 997.06 4675.78

pw100.d010 1.64 65.34 228.70 2.06 34.88 113.86
pw100.d050 122.67 715.95 1798.61 81.34 732.48 2506.69
pw100.d090 209.02 606.82 1297.98 201.61 509.48 1061.18

ising100 7.74 12.76 19.86 2.62 3.04 3.87
ising150 42.55 60.31 85.74 7.74 10.70 12.89
ising200 150.39 233.99 403.19 19.72 27.26 37.59
ising250 165.79 981.56 2161.49 47.88 138.27 406.84
ising300 991.28 4268.83 11858.56 97.43 455.77 1628.66

t2g10 1.63 2.22 3.04 3.50 4.14 5.30
t2g15 56.55 66.36 73.34 38.87 42.45 46.03
t2g20 1014.38 4676.45 11132.18 351.37 1159.24 2748.55

t3g5 3.22 4.42 5.49 7.18 7.39 7.71
t3g6 52.34 159.36 367.12 41.85 218.22 566.66
t3g7 81.37 5931.61 17601.56 123.46 3838.06 11234.02
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Figure 2: Performance profile curves (29) for the four solvers on the 328
problems.

only the “hard problems” (those that Biq Mac does not solve at the root
node), this percentage increases to 85% (226 out of 269).

Table 2 shows that, on some problems (e.g., g05 or w100) our method is
roughly equivalent to Biq Mac, and on some others it is two times quicker
(e.g., gk) or even 6 times quicker (e.g., be250.d10). In particular, we obtain
substantial improvements, in both time and number of nodes, for large-sized
problems, as can be seen in the detailed results in Appendix A; see, e.g.,
bqp250 (Table 5), be250.d10 (Table 18), and ising300 (Table 36). Addition-
ally, we note that both our methods are able to solve all test problems within
the 100 hour time limit (Biq Mac (R3) fails to solve 6 instances within this
time limit).

The performance profile in Figure 2 shows that both of our methods dom-
inate both of the Biq Mac methods in terms of speed, and also robustness,
since the curves for our methods are constantly above the ones for Biq Mac.
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6 Conclusions

In this paper, we presented an improved semidefinite bounding procedure
to efficiently solve Max-Cut and binary quadratic programming problems to
optimality. We precisely analyzed its theoretical convergence properties, and
we conducted a complete numerical comparison with the leading Biq Mac
method. Our algorithm is shown to be often faster and more robust than
Biq Mac; in particular, our solver was able to solve around 75% of the
problems of the Biq Mac Library (with n < 500) in less time than Biq Mac.

Moreover, there is still room for improvement in our current implemen-
tation. In particular, we would like to investigate how we can make the
eigenvalue decomposition more efficient by somehow using prior informa-
tion. We could also try decoupling the optimization of the y and z dual
variables, as is done in Biq Mac, to possibly make the bound computation
more efficient.

By focusing on Max-Cut and binary quadratic programming problems,
we have shown unambiguously the interest of our semidefinite-based method
to solve these classes of problems to optimality. Because our approach is
based on the general bounds of [19], it can also be applied to binary quadratic
problems with additional linear or quadratic constraints. In our future work,
we will consider this generalization. Due to the inherent flexibility of our
method, we believe that our method has a strong potential to handle other
classes of problems, even those for which semidefinite-based methods are not
yet competitive.

Acknowledgments We are grateful to Angelika Wiegele for the discus-
sions we have had and for providing us with a copy of the Biq Mac solver
for our numerical comparison.
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A Tables of numerical results

Table 3: CPU time (s) and nodes to solve the bqp50 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 11.19 5.03 23 7 0.35 0.25 1 1
2 0.31 0.31 1 1 0.58 0.24 1 1
3 0.11 0.11 1 1 0.98 0.17 1 1
4 0.25 0.25 1 1 0.63 0.22 1 1
5 0.20 0.20 1 1 0.31 0.21 1 1
6 0.13 0.13 1 1 0.25 0.21 1 1
7 0.22 0.22 1 1 0.27 0.26 1 1
8 0.16 0.16 1 1 0.26 0.19 1 1
9 0.18 0.18 1 1 0.29 0.25 1 1

10 0.45 0.45 1 1 0.29 0.24 1 1
Total: 6/10 6/10 0/10 4/10

Table 4: CPU time (s) and nodes to solve the bqp100 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 2.40 2.40 1 1 1.40 1.72 1 1
2 2.80 2.80 1 1 9.54 2.06 1 1
3 1.14 1.14 1 1 7.39 1.60 3 1
4 0.92 0.92 1 1 3.08 1.42 1 1
5 1.43 1.43 1 1 3.99 1.69 1 1
6 139.09 22.29 169 7 40.10 11.12 13 3
7 1.87 1.87 1 1 5.60 1.80 1 1
8 1.62 1.62 1 1 1.83 1.63 1 1
9 1.11 1.11 1 1 3.10 1.46 1 1

10 2.12 2.12 1 1 5.84 1.67 1 1
Total: 5/10 5/10 1/10 4/10

Table 5: CPU time (s) and nodes to solve the bqp250 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 3709.00 1790.82 291 41 660.04 171.08 37 3
2 3094.08 1063.38 173 25 502.86 166.32 31 3
3 4220.53 526.18 309 11 65.49 47.13 1 1
4 3425.14 1615.88 243 37 53.04 185.95 1 3
5 3590.11 727.07 293 17 2122.92 55.17 101 1
6 3937.78 13014.86 309 323 2953.55 1213.87 331 19
7 3872.44 1119.27 297 25 917.86 173.05 55 3
8 54277.92 >360000.00 4341 >15387 40039.83 14714.12 5571 307
9 3398.68 3011.68 341 73 3241.21 373.52 263 7

10 3363.66 2452.87 233 59 2651.67 393.81 189 7
Total: 0/10 0/10 1/10 9/10
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Table 6: CPU time (s) and nodes to solve the gkaa problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 1.03 1.03 1 1 0.25 0.33 1 1
2 0.19 0.19 1 1 0.58 0.42 1 1
3 1.37 1.37 1 1 1.74 0.93 1 1
4 0.82 0.82 1 1 1.45 1.07 1 1
5 0.18 0.18 1 1 0.29 0.29 1 1
6 0.08 0.08 1 1 0.07 0.06 1 1
7 0.06 0.06 1 1 0.06 0.07 1 1
8 0.68 0.68 1 1 3.54 2.11 1 1

Total: 5/8 5/8 2/8 2/8

Table 7: CPU time (s) and nodes to solve the gkab problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 1.11 1.11 1 1 1.83 0.10 13 1
2 5.97 9.54 43 33 4.76 2.18 29 3
3 12.69 33.03 47 83 11.95 9.44 53 13
4 29.59 108.85 89 173 24.36 18.42 79 27
5 66.27 300.14 161 335 39.20 42.15 85 43
6 131.01 1044.74 175 853 86.56 94.96 163 67
7 545.12 2509.01 551 1459 212.73 266.60 331 113
8 1630.28 11068.75 1623 6009 851.14 789.10 1379 331
9 3367.32 30173.75 3609 14173 2008.11 1608.04 3083 703

10 10719.44 178991.20 5881 43609 5104.21 7968.24 6309 2107
Total: 0/10 0/10 4/10 6/10

Table 8: CPU time (s) and nodes to solve the gkac problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 0.16 0.16 1 1 0.13 0.15 1 1
2 0.17 0.17 1 1 0.27 0.25 1 1
3 0.38 0.38 1 1 0.44 0.43 1 1
4 0.97 0.97 1 1 0.73 0.86 1 1
5 0.72 0.72 1 1 1.36 0.93 1 1
6 1.02 1.02 1 1 1.97 1.54 1 1
7 0.94 0.94 1 1 2.99 1.95 1 1

Total: 5/7 5/7 2/7 0/7
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Table 9: CPU time (s) and nodes to solve the gkad problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 1.53 1.53 1 1 1.96 2.10 1 1
2 15.93 9.59 5 3 1.63 2.65 1 1
3 34.73 11.38 13 3 1.85 2.79 1 1
4 124.40 35.21 77 9 3.25 4.23 1 1
5 112.72 74.91 129 21 86.70 55.72 125 11
6 73.86 10.09 31 3 2.14 3.03 1 1
7 118.68 79.33 123 25 84.20 46.04 111 9
8 57.30 11.26 21 3 3.08 2.94 1 1
9 127.02 50.54 139 15 100.76 34.08 103 7

10 124.43 45.92 117 13 114.69 30.97 93 5
Total: 1/10 1/10 4/10 5/10

Table 10: CPU time (s) and nodes to solve the gkae problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 1391.44 126.98 129 5 285.89 21.77 37 1
2 1902.51 13839.63 413 665 1047.08 2581.48 373 87
3 1436.94 25243.00 241 289 896.16 1159.87 237 43
4 1393.70 3876.28 311 177 928.96 869.92 293 31
5 25721.41 >360000.00 4717 >19270 16654.15 41480.79 4977 1705

Total: 0/5 0/5 3/5 2/5

Table 11: CPU time (s) and nodes to solve the be100.d100 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 145.63 19.84 107 5 8.07 11.06 1 1
2 133.79 18.53 83 5 3.79 6.27 1 1
3 113.25 16.70 61 5 4.83 5.73 1 1
4 134.86 66.40 153 17 214.01 40.08 101 5
5 108.61 37.96 89 11 206.99 25.98 55 3
6 123.99 17.93 69 5 8.13 6.82 1 1
7 122.58 30.69 109 9 203.55 22.37 79 3
8 115.35 108.69 141 31 157.96 114.88 119 15
9 120.99 89.84 153 27 127.67 84.72 107 11

10 90.89 22.22 53 7 154.37 23.57 57 3
Total: 0/10 2/10 3/10 5/10
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Table 12: CPU time (s) and nodes to solve the be120.d30 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 223.63 113.27 161 19 432.05 76.30 125 5
2 92.97 15.33 23 3 8.99 7.18 1 1
3 120.97 16.76 31 3 11.50 7.76 1 1
4 248.71 40.07 137 7 14.49 12.88 1 1
5 147.27 25.69 43 5 6.25 8.12 1 1
6 40.13 14.98 9 3 7.25 6.57 1 1
7 6.10 6.10 1 1 9.42 6.77 1 1
8 4.52 4.52 1 1 5.01 6.62 1 1
9 168.79 64.48 67 11 293.80 38.91 61 3

10 164.08 25.17 55 5 9.13 12.15 1 1
Total: 2/10 2/10 2/10 6/10

Table 13: CPU time (s) and nodes to solve the be120.d80 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 194.02 605.39 169 121 176.44 387.06 155 35
2 211.55 211.99 151 43 210.19 155.44 127 17
3 221.43 117.90 135 21 265.80 114.50 131 9
4 246.84 39.12 163 7 284.60 34.34 37 3
5 207.09 43.70 91 7 120.71 32.60 19 3
6 218.58 120.64 137 23 284.45 97.73 109 7
7 185.74 402.85 171 75 239.83 290.84 163 27
8 194.87 896.84 173 191 268.07 500.34 159 47
9 234.79 182.72 171 35 278.10 177.83 137 15

10 241.88 170.65 183 31 323.77 128.65 157 9
Total: 2/10 0/10 1/10 7/10

Table 14: CPU time (s) and nodes to solve the be150.d30 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 552.72 170.68 145 15 784.90 111.72 101 7
2 487.97 162.74 125 15 750.87 90.88 125 7
3 229.30 39.21 29 3 11.00 7.74 1 1
4 656.06 111.98 181 9 27.47 32.53 1 3
5 560.44 344.08 193 31 769.36 101.60 181 7
6 529.45 2214.69 215 219 511.70 487.36 219 35
7 572.02 340.56 163 29 703.18 128.91 121 9
8 607.62 3461.01 243 359 665.17 909.82 243 63
9 844.33 5863.95 231 671 767.08 1072.17 227 87

10 528.52 4004.32 253 427 466.50 1004.20 225 65
Total: 1/10 0/10 3/10 6/10
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Table 15: CPU time (s) and nodes to solve the be150.d80 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 499.99 1207.49 225 129 483.87 593.74 195 49
2 536.48 7004.88 243 715 475.02 1872.56 233 155
3 441.62 3404.46 257 329 443.02 1019.10 239 71
4 526.56 591.11 167 59 468.46 363.55 151 27
5 482.92 1604.64 255 137 542.07 572.02 237 39
6 501.99 2033.05 223 201 536.32 802.06 205 59
7 525.18 5880.48 273 565 608.20 1211.89 217 95
8 507.49 1963.59 209 189 522.82 760.43 205 53
9 477.27 3903.36 253 413 544.90 1615.86 235 121

10 561.98 1634.39 217 157 480.67 568.80 207 43
Total: 6/10 0/10 3/10 1/10

Table 16: CPU time (s) and nodes to solve the be200.d30 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 43850.81 >360000.00 7927 >25405 32612.82 56902.36 8985 2399
2 2553.97 87629.96 461 2627 1479.82 10624.76 503 355
3 1570.50 9464.23 305 351 798.46 1345.49 285 43
4 2597.34 90241.20 527 2251 844.91 7671.43 369 253
5 1630.94 52812.92 339 1121 808.48 4523.10 343 155
6 2054.03 34443.12 395 801 778.60 3057.63 293 119
7 1571.54 1079.71 195 25 642.16 102.61 69 3
8 4503.36 83747.75 685 2097 1135.38 5076.93 373 209
9 7737.93 74078.57 1217 2639 2551.76 6329.74 693 251

10 14656.52 319573.82 2359 11431 7407.25 22016.54 1935 861
Total: 0/10 0/10 9/10 1/10

Table 17: CPU time (s) and nodes to solve the be200.d80 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 1210.52 25458.48 307 951 1572.38 4581.21 321 137
2 35247.12 >360000.00 5907 >34105 25518.98 81821.55 6581 3597
3 26318.86 >360000.00 6069 >23691 14474.43 64771.02 6067 2789
4 1866.05 77647.69 403 1785 1062.46 7627.42 389 305
5 9189.31 241577.21 1671 6189 4949.74 17366.65 1417 743
6 1580.43 3643.09 355 87 1051.23 596.22 239 21
7 1344.09 77552.67 345 1963 712.30 6756.64 333 265
8 25950.40 >360000.00 4941 >14429 16204.96 44663.86 5053 1895
9 1499.53 11130.84 259 211 930.82 935.36 253 37

10 2722.89 111291.76 509 3035 1574.58 8805.80 441 363
Total: 1/10 0/10 8/10 1/10
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Table 18: CPU time (s) and nodes to solve the be250.d10 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

1 3703.05 2098.62 319 49 2473.27 182.31 255 3
2 3611.26 1516.95 277 35 3618.13 176.91 367 3
3 3996.90 896.11 187 19 34.85 51.04 1 1
4 4157.19 1522.45 353 35 1518.58 151.37 153 3
5 3754.20 4516.16 305 113 2731.70 903.37 361 15
6 3471.50 3285.36 225 83 2440.30 432.71 215 7
7 2394.79 328.64 81 7 27.98 39.76 1 1
8 3675.89 3826.01 295 87 2980.22 529.83 307 9
9 3636.68 3992.81 311 97 3243.97 905.98 411 13

10 3664.60 3708.73 451 85 3920.43 751.78 443 13
Total: 0/10 0/10 2/10 8/10

Table 19: CPU time (s) and nodes to solve the g05.n60 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 6.91 3.34 15 5 8.74 2.15 19 3
1 1.98 2.02 3 3 0.89 1.00 1 1
2 9.08 6.87 17 11 7.08 7.83 23 11
3 0.26 0.26 1 1 0.67 0.99 1 1
4 13.27 21.45 43 41 24.84 28.31 51 31
5 0.34 0.34 1 1 5.89 5.00 5 3
6 11.04 8.42 29 15 12.08 9.31 37 11
7 13.36 4.48 33 7 7.52 12.83 15 7
8 7.95 5.23 17 9 6.98 4.95 19 7
9 13.26 14.39 43 23 15.35 11.80 39 25

Total: 3/10 5/10 1/10 3/10

Table 20: CPU time (s) and nodes to solve the g05.n80 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 49.16 66.56 77 61 55.22 43.71 89 47
1 14.25 6.39 13 5 2.80 3.66 1 1
2 34.09 20.54 43 17 18.88 22.24 45 15
3 274.50 512.58 385 533 296.10 386.78 571 355
4 40.71 52.76 69 45 43.36 36.54 79 29
5 52.10 53.65 71 49 67.16 75.93 109 77
6 36.44 40.81 59 33 42.73 36.54 71 31
7 24.45 18.48 29 15 28.41 18.26 43 17
8 51.92 64.20 71 61 73.96 37.41 131 47
9 80.64 141.93 113 141 119.53 73.64 199 87

Total: 3/10 0/10 2/10 5/10
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Table 21: CPU time (s) and nodes to solve the g05.n100 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 665.41 2194.05 547 1301 1060.48 663.41 1105 417
1 4197.29 14856.75 3533 9565 4527.49 3382.27 5345 2293
2 151.21 448.26 125 237 291.61 209.21 399 113
3 1540.31 4409.16 1157 2803 2143.00 1304.29 2533 859
4 93.45 133.74 75 67 104.66 96.05 105 51
5 126.56 339.26 117 171 325.38 182.40 313 97
6 197.72 422.34 181 227 346.61 237.33 355 131
7 351.58 1176.15 297 633 479.94 540.45 567 283
8 344.37 904.24 261 509 643.44 331.47 719 257
9 370.94 852.80 279 503 599.54 326.16 671 275

Total: 5/10 0/10 0/10 5/10

Table 22: CPU time (s) and nodes to solve the pm1s80.d090 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 0.65 0.65 1 1 1.64 1.19 1 1
1 0.58 0.58 1 1 1.63 1.50 1 1
2 26.71 23.96 27 17 26.74 13.40 41 13
3 1.19 1.19 1 1 1.73 1.90 1 1
4 0.65 0.65 1 1 0.96 2.33 1 1
5 0.90 0.90 1 1 1.05 1.22 1 1
6 14.74 12.53 13 9 7.88 6.61 13 3
7 1.33 1.33 1 1 7.41 4.41 11 3
8 17.59 4.64 15 3 3.22 8.08 3 7
9 1.13 1.13 1 1 5.10 6.20 1 1

Total: 7/10 7/10 1/10 2/10

Table 23: CPU time (s) and nodes to solve the pm1s100.d010 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 26.44 27.62 15 15 55.87 16.78 49 13
1 130.28 143.84 93 93 190.01 88.48 193 47
2 18.80 20.78 9 9 24.77 12.27 29 9
3 100.00 110.81 59 59 286.00 67.01 305 45
4 80.33 88.18 51 51 63.50 39.82 75 25
5 27.45 30.03 15 15 73.63 33.63 89 23
6 80.07 88.12 51 51 137.16 71.86 171 47
7 1.15 1.15 1 1 1.85 2.55 1 1
8 10.88 12.16 5 5 34.03 5.95 29 3
9 23.26 25.69 11 11 9.39 13.08 5 5

Total: 2/10 1/10 1/10 7/10
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Table 24: CPU time (s) and nodes to solve the pm1d80.d090 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 33.17 27.54 51 23 37.43 15.07 59 17
1 111.02 293.45 173 275 114.29 171.07 243 131
2 64.88 131.77 99 113 43.10 55.73 113 57
3 30.36 31.32 39 27 30.85 18.44 45 19
4 37.74 46.06 65 37 31.43 44.47 75 45
5 212.47 419.49 307 405 138.19 177.21 365 185
6 105.25 114.51 147 109 67.88 58.97 149 65
7 64.04 211.43 111 183 109.78 98.84 253 111
8 41.18 44.06 59 37 30.98 33.19 65 37
9 29.88 24.56 35 21 28.31 13.74 47 15

Total: 2/10 0/10 4/10 4/10

Table 25: CPU time (s) and nodes to solve the pm1d100.d090 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 1229.18 8419.09 911 2281 1414.77 1026.52 1507 667
1 2868.06 17301.82 2157 4717 3236.25 1800.63 3575 1207
2 1863.13 11310.46 1375 3523 2047.23 1092.72 2443 823
3 376.93 1955.87 281 553 379.67 386.88 587 275
4 1651.17 4804.95 1203 2241 1138.05 948.92 1771 729
5 381.03 1900.61 271 475 335.83 276.72 485 189
6 350.15 1289.96 243 305 246.31 207.73 389 139
7 106.24 499.16 109 109 80.74 114.22 141 65
8 134.02 358.58 99 81 116.56 56.94 133 39
9 494.13 2500.91 355 637 430.41 336.99 529 241

Total: 1/10 0/10 1/10 8/10

Table 26: CPU time (s) and nodes to solve the w100.d010 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 27.70 7.09 13 3 5.28 12.13 1 1
1 57.66 17.95 35 3 43.34 21.59 23 3
2 131.45 296.92 77 137 595.77 152.09 491 47
3 43.14 13.46 23 5 35.67 13.81 33 5
4 2.12 2.12 1 1 1.85 2.47 1 1
5 18.31 16.32 9 7 24.89 9.76 17 3
6 2.35 2.35 1 1 2.22 2.64 1 1
7 50.86 31.53 27 13 24.06 26.43 23 11
8 1.37 1.37 1 1 1.71 2.08 1 1
9 12.45 7.85 5 3 2.30 2.69 1 1

Total: 2/10 3/10 5/10 1/10
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Table 27: CPU time (s) and nodes to solve the w100.d050 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 945.25 2164.97 737 1217 1335.05 1061.46 969 459
1 211.42 515.41 191 263 290.43 311.70 229 109
2 175.46 357.04 143 177 186.81 202.08 175 63
3 612.54 2087.57 489 1159 825.00 563.16 949 319
4 1040.41 2704.91 835 1499 964.91 720.19 1125 357
5 1027.07 2436.14 789 1331 1137.77 802.39 1349 413
6 220.65 587.59 171 305 188.11 189.44 223 93
7 137.39 196.16 105 93 84.50 86.61 93 39
8 1152.49 2879.08 875 1637 1069.53 775.14 1255 465
9 109.99 135.18 91 65 81.02 83.06 87 33

Total: 3/10 0/10 3/10 4/10

Table 28: CPU time (s) and nodes to solve the w100.d090 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 539.51 1163.23 411 629 1038.44 770.67 653 271
1 2945.89 14097.89 2525 8485 5897.16 4675.78 4413 1821
2 1364.49 4619.19 1087 2711 1167.26 1519.29 1179 765
3 1487.39 6598.30 1199 3939 1637.23 1630.03 1789 897
4 717.48 1943.66 589 1065 800.85 608.70 845 293
5 79.69 38.67 57 17 28.48 26.50 23 9
6 89.86 190.11 103 87 131.40 138.67 131 57
7 377.18 949.78 271 509 374.73 299.03 391 157
8 205.76 439.04 213 209 187.90 225.81 209 105
9 596.26 1637.01 459 903 571.00 473.28 637 267

Total: 4/10 0/10 2/10 4/10

Table 29: CPU time (s) and nodes to solve the pw100.d010 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 32.32 28.47 15 11 94.80 27.52 63 13
1 144.42 112.86 107 47 82.52 49.65 83 15
2 53.49 57.39 33 25 174.22 49.84 123 21
3 95.28 120.84 61 55 109.82 35.61 99 15
4 15.11 8.02 7 3 2.64 3.10 1 1
5 20.20 8.33 9 3 2.50 3.20 1 1
6 56.65 51.35 29 23 37.24 23.02 35 11
7 89.73 65.23 57 27 60.77 42.09 57 15
8 1.64 1.64 1 1 2.06 2.15 1 1
9 228.70 244.33 157 111 172.00 113.86 191 43

Total: 1/10 1/10 2/10 7/10
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Table 30: CPU time (s) and nodes to solve the pw100.d050 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 1798.61 7433.26 1447 4679 3732.88 2506.69 2949 1161
1 529.82 1787.33 413 1033 692.52 628.58 745 357
2 831.04 2315.65 697 1381 1136.32 710.04 1095 373
3 145.66 371.98 119 197 164.25 157.69 185 85
4 911.92 2763.95 765 1629 1188.62 970.65 1305 549
5 232.10 374.56 169 201 232.79 218.71 259 117
6 1726.73 5507.96 1401 3327 1751.65 1359.81 2031 737
7 454.48 913.14 333 485 384.06 300.39 429 153
8 122.67 196.11 121 91 103.26 81.34 113 37
9 406.52 1093.26 315 611 390.92 397.39 445 219

Total: 4/10 0/10 1/10 5/10

Table 31: CPU time (s) and nodes to solve the pw100.d090 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

0 753.88 4508.30 559 1175 1122.32 677.50 979 321
1 971.02 6800.50 723 1827 1113.34 883.57 1237 485
2 362.03 1957.67 267 501 354.55 334.49 405 199
3 209.02 1261.49 155 301 201.61 255.36 215 131
4 544.85 2324.07 401 575 396.38 363.92 467 195
5 647.55 3797.79 533 919 605.58 658.84 733 337
6 577.00 2826.12 391 717 448.18 405.48 541 261
7 1297.98 8382.66 981 2253 1112.62 1061.18 1375 621
8 381.88 2154.22 303 515 347.05 313.59 393 175
9 323.01 1536.21 247 369 247.90 288.67 289 145

Total: 0/10 0/10 3/10 7/10

Table 32: CPU time (s) and nodes to solve the ising100 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

251005555 165.65 19.86 113 7 2.86 3.15 1 1
251006666 141.74 9.41 65 3 2.62 2.96 1 1
251007777 145.33 10.01 75 3 2.96 2.76 1 1
301005555 142.05 18.78 99 7 3.87 4.51 1 1
301006666 69.03 7.74 115 3 4.36 2.98 1 1
301007777 33.13 10.76 11 3 3.51 3.14 1 1

Total: 0/6 0/6 3/6 3/6
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Table 33: CPU time (s) and nodes to solve the ising150 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

251505555 505.60 54.44 99 7 14.49 12.89 1 1
251506666 1060.72 70.97 151 7 9.04 8.48 1 1
251507777 630.15 85.74 139 9 10.79 12.19 1 1
301505555 538.02 48.18 199 5 15.86 11.72 1 1
301506666 651.94 59.97 141 7 7.94 7.74 1 1
301507777 460.91 42.55 191 5 15.38 12.57 1 1

Total: 0/6 0/6 1/6 5/6

Table 34: CPU time (s) and nodes to solve the ising200 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

252005555 1880.36 150.39 231 9 23.37 19.72 1 1
252006666 2923.63 194.08 317 9 24.72 27.52 1 1
252007777 2139.40 403.19 475 19 27.20 30.21 1 1
302005555 1329.85 212.69 273 11 27.77 23.75 1 1
302006666 2529.97 247.57 271 13 39.85 37.59 1 1
302007777 1054.57 195.99 255 9 31.61 30.58 1 1

Total: 0/6 0/6 2/6 4/6

Table 35: CPU time (s) and nodes to solve the ising250 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

252505555 3440.53 2161.49 393 59 3490.20 406.84 125 7
252506666 4499.77 885.76 145 25 53.01 174.96 1 3
252507777 3600.15 1066.09 641 27 3548.82 213.82 201 3
302505555 8293.36 1029.29 859 29 47.88 61.41 1 1
302506666 4366.78 165.79 501 5 52.41 53.64 1 1
302507777 3013.34 580.93 191 17 55.69 73.98 1 1

Total: 0/6 0/6 4/6 2/6

Table 36: CPU time (s) and nodes to solve the ising300 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

253005555 21859.40 3420.25 931 55 102.98 143.62 1 1
253006666 23203.24 4624.07 1839 71 110.44 121.36 1 1
253007777 27282.55 11858.56 1327 175 7108.80 1628.66 141 15
303005555 7605.89 1201.86 545 19 118.33 99.26 1 1
303006666 4235.17 991.28 131 15 1549.33 97.43 23 1
303007777 8623.52 3516.96 541 57 6342.78 695.85 123 5

Total: 0/6 0/6 2/6 4/6
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Table 37: CPU time (s) and nodes to solve the t2g10 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 1.98 1.98 1 1 5.30 5.48 1 1
6666 1.63 1.63 1 1 3.63 4.30 1 1
7777 3.04 3.04 1 1 3.50 4.40 1 1

Total: 3/3 3/3 0/3 0/3

Table 38: CPU time (s) and nodes to solve the t2g15 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 157.29 56.55 3 3 38.87 43.13 1 1
6666 79.80 73.34 3 3 42.44 49.30 1 1
7777 245.17 69.18 5 3 46.03 57.02 1 1

Total: 0/3 0/3 3/3 0/3

Table 39: CPU time (s) and nodes to solve the t2g20 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 24877.86 1014.38 225 7 351.37 386.62 1 1
6666 72586.37 11132.18 715 75 33617.12 2748.55 447 7
7777 23906.54 1882.78 221 13 8668.10 377.79 27 1

Total: 0/3 0/3 1/3 2/3

Table 40: CPU time (s) and nodes to solve the t3g5 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 3.22 3.22 1 1 7.35 7.18 1 1
6666 5.49 5.49 1 1 7.27 7.57 1 1
7777 4.55 4.55 1 1 7.71 8.55 1 1

Total: 3/3 3/3 0/3 0/3

Table 41: CPU time (s) and nodes to solve the t3g6 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 62.40 52.34 3 3 41.85 48.24 1 1
6666 1882.42 367.12 165 17 3300.55 566.66 83 9
7777 116.28 58.61 5 3 46.16 54.61 1 1

Total: 0/3 1/3 2/3 0/3
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Table 42: CPU time (s) and nodes to solve the t3g7 problems.
Prob.

Biq Mac time Biq Mac nodes Our time Our nodes
(R2) (R3) (R2) (R3) (R2) (R3) (R2) (R3)

5555 81.37 81.37 1 1 123.46 152.74 1 1
6666 111.89 111.89 1 1 156.69 178.42 1 1
7777 24999.25 17601.56 549 191 78224.93 11234.02 575 81

Total: 2/3 2/3 0/3 1/3

43

ha
l-0

06
65

96
8,

 v
er

si
on

 1
 - 

3 
Fe

b 
20

12


	Introduction
	Semidefinite relaxations and Biq Mac
	New family of semidefinite bounds
	The new semidefinite bounds
	Mathematical study of the bounds FI(y,z)
	Computing the bounds

	Improved semidefinite bounding procedure
	Description of the bounding procedure
	Convergence of the bounding procedure
	Numerical illustration of the bounding procedure

	Solving Max-Cut to optimality
	Branch-and-bound implementation
	Description of the numerical tests
	Computational results

	Conclusions
	Tables of numerical results

