
BOB : a Uni�ed Platform for ImplementingBranch-and-Bound like AlgorithmsB. Le Cun,C. Roucairol and The PNN TeamN� 95/16

BOB : a Uni�ed Platform for ImplementingBranch-and-Bound like Algorithms�B. Le Cuny,C. Roucairoly and The PNN TeamTh�eme/Theme 1 | Parall�elisme/Parallelism�Equipe/Team PNNzRapports de Recherche n�95/16 | | 21 pagesAbstract: In this report, we propose the library BOB for an easy development of theBranch-and-Bound applications (min/maximization). This library has the double goal ofallowing on the one hand the Combinatorial Optimization community to implement theirapplications without worrying about the architecture of the machines and bene�ting theadvantages provided by parallelism. On the other hand, BOB o�ers to the communityof Parallelism a set of benchmark composed by the e�cient algorithms of CombinatorialOptimization for its parallelization methods and/or tools.To achieve this double goal, the BOB library is founded on the notion of global priorityqueue which makes the parallelization methods independent from the applications, andvice-versa. We describe for this global priority queue di�erent implementation models(asynchronous, synchronous, client/server, ...) according to the type of used machine(serial, parallel with shared or distributed memory).A set of serial and concurrent data structures (D-Heap, Skew-Heap, Implicit-Heap,Funnel-Tree, Splay-Trees, ...) is provided to achieve the global priority queue.We also emphasis on the conception of BOB and its main components (user functions,kernel functions and monitor), in particular the management of the global upper/lowerbound in parallel environment. Finally, we show with an example how easy to developBranch-and-Bound applications with this library.Key-words: Branch-and-Bound method, parallel and distributed algorithms, library offunctions, data structures, priority queues, concurrency, load balancing.The PNN team members : M. Bena��chouche, V.-D. Cung, S. Dowaji, T. Mautor.(R�esum�e : tsvp)zEmail : pnn@prism.uvsq.fr�This work was partially supported by the project Stratag�eme of the french CNRS.yMay also be contacted at INRIA, Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex, FRANCE. Laboratoire PRiSMUniversit�e de Versailles - Saint Quentin en Yvelines78035 Versailles Cedex, FRANCE.T�el�ephone/Phone : (33 1) 39 25 40 56 { T�el�ecopie/Fax : (33 1) 39 25 40 57

BOB : une Plate-forme Uni��ee de D�eveloppement pour lesAlgorithmes de type Branch-and-BoundzR�esum�e : Nous proposons, dans ce rapport, une biblioth�eque d'aide au d�eveloppementd'applications de type Branch-and-Bound BOB (min/maximisation). Cette biblioth�equea le double objectif d'une part, de permettre �a la communaut�e de l'Optimisation Com-binatoire d'impl�ementer ses applications sans se soucier de l'architecture des machineset de pro�ter des avantages du parall�elisme; et d'autre part, d'o�rir �a la communaut�ede Parall�elisme un banc d'essai, compos�e d'algorithmes performants de l'OptimisationCombinatoire, pour ses m�ethodes et/ou outils de parall�elisation.Pour r�ealiser ce double objectif, la biblioth�eque BOB est fond�ee sur la notion de �le depriorit�e globale qui permet de rendre transparentes les m�ethodes de parall�elisation vis �a visdes applications, et vice-versa. Nous d�ecrirons pour cette �le de priorit�e globale, di��erentsmod�eles d'impl�ementation (asynchrone, synchrone, client/serveur, ...) suivant le type demachine utilis�ee (s�equentiel, parall�ele �a m�emoire partag�ee ou �a m�emoire distribu�ee).Un ensemble de structures de donn�ees s�equentielles et concurrentes (D-Heap, Skew-Heap, Implicite-Heap, Funnel-Tree, Splay-Trees, ...) est propos�e pour la r�ealisation de la�le de priorit�e globale.Nous d�etaillerons �egalement la conception de BOB et ses principales composantes(fonctions utilisateurs, fonctions noyau et moniteur), notamment la gestion en environ-nement parall�ele de la borne sup/inf�erieure globale. Puis, nous montrons, �a l'aide d'unexemple, la facilit�e de d�eveloppement des applications de type Branch-and-Bound, aveccette biblioth�eque.Mots-cl�e : M�ethode Branch-and-Bound, algorithmique parall�ele et distribu�ee, biblio-th�eque de fonctions, structures de donn�ees, �les de priorit�e, concurrence, �equilibrage decharge.
zCe travail est partiellement �nanc�e par le projet Stratag�eme du CNRS.

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms IContents1 The need for a Branch-and-Bound library 12 Principle of functioning of the library 12.1 A Branch-and-Bound program : 22.2 The parallelism : 22.3 The critical components of an application : : : : : : : : : : : : : : : : : : : 32.3.1 The global priority queue : 52.3.2 Local or shared priority queue : 63 Conceptual structure of the library 74 Objects in the application 74.1 Types and functions de�ned by the user : 84.2 The types, variables and functions provided by the library : : : : : : : : : : 85 Monitor 115.1 Activities of processes : 115.2 State of local or shared priority queues : 116 Architecture of the library 116.1 Organization of directories : 116.2 The Bob directory : 126.3 Directories of the architectures : ArchSEQ, ArchSHARED and ArchDISTRIB : 136.4 Portability of the library : 136.5 Compilation and execution : 146.5.1 Compilation : 146.5.2 The executable : 157 The development of an application 157.1 The header �le typedef.h : 157.2 The source �le(s) : 167.3 The �le makefile : 178 Conclusion and perspectives 17
Laboratoire PRiSM

II PNN team

Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 11 The need for a Branch-and-Bound libraryAll Branch-and-Bound applications use the same components [4, 15, 19, 22, 26, 28,29, 33]. When someone writes Branch-and-Bound algorithms to resolve real-life problems,often he rewrites (implements) these components : Management of the priority queue,management of the upper bound, etc. He can not concentrate his work for the essentialparts of the application (generation, evaluation). Moreover, the center of his interest beingon the Combinatorial Optimization side, he often makes too little e�ort to optimize theimplementational parts of his application like the priority queue. For example, he mightuse a priority queue in the form of a D-Heap (or implicit-Heap) while other forms ofpriority queues might be much more e�cient. The total execution time of the applicationwould be penalized. In sequential implementation, a library should then facilitate thedevelopment of an application of the type Branch-and-Bound and should o�er e�cientcomponents.Moreover, parallelism seems to be an interesting option to resolve larger problemsmore quickly [3, 5, 12, 16, 24, 36]. However, when someone writes an e�cient sequentialBranch-and-Bound application, he rarely ports it on a parallel machine. Although the useof such machine would retard the combinatorial explosion. We will demonstrate that inthe case of the parallelization of a search, it is possible to make the parallelism transparentfor the application. That facilitates enormously the development and the portability ofan application using the Branch-and-Bound method on parallel machines.Another good reason for the presence of a library is to be able to validate the paral-lelizations of Branch-and-Bound on concrete examples. As a matter of fact, researchersworking on the parallelization of an algorithm work little on the resolution of the problemfrom a Combinatorial Optimization point of view. They often use a simple example of aBranch-and-Bound application which does not necessarily re
ect a good execution modelof their parallelization [21, 30].Writing a library is also a good mean to try to give a standard to write Branch-and-Bound applications in order to facilitate the exchange of code between researchers. Ourlibrary BOB is a way to join the two communities : Combinatorial optimization andparallel algorithmic.In our knowledge, there exist similar libraries. However, they are not as much dedicatedto Branch-and-Bound methods [11, 16] and subsequently they o�er lesser facilities todevelop applications. They do not neither cover all types of machines. The targetedmachines are only distributed-memory ones [35]. Moreover, they do not o�er to the usera set of data structures as general as BOB.2 Principle of functioning of the libraryFirst of all, we will describe our own conception of a Branch-and-Bound program bygiving a uni�ed vision of the algorithm on serial machines, parallel machines with sharedor distributed memory or even on a network of workstations.Laboratoire PRiSM

2 PNN teamThen we will isolate the components which are to be implemented by the programmerof the application and those being able to be implemented by the BOB library in functionof the architecture of the machine.2.1 A Branch-and-Bound programA Branch-and-Bound program is composed of three parts or principle procedures.Initialization : The goal of this procedure is to initialize certain variables like the bestknown solution, its cost (the lower bound in a minimization and the upper boundin a maximization), and the di�erent informations proper to the application likematrices, vectors, etc.Search : This procedure is intended to visit the search tree. It includes the generation(with the principle of branching) and the evaluation of the children nodes (subprob-lems). In order to give the possibility to choose between di�erent search strategies,we have isolated in this procedure a subprocedure. This subprocedure generates andevaluates the children nodes of exactly one node passed to it via a parameter.The exploration of a child node is either postponed by inserting it into a priorityqueue, or immediate by a recursive call to this subprocedure. Hence, Best First andDepth First search strategies could be tested for the same application. Moreover,that would permit mixed strategies where certain subtrees, chosen by the best �rststrategy, are explored in a depth �rst manner for a certain height. Therefore, aregulation of the "granularity" of computation between two accesses to the priorityqueue is made possible. This procedure makes certain operations on a priority queue.This priority queue contains the nodes waiting to be explored. This procedure shouldalso be able to access the lower/upper bound in order to update it when a newsolution has been found or to make sure that a certain node must be explored.Thus, the components presented here are the functions of generation and evaluation(Branching and Bounding), the priority queue and the lower/upper bound.End : This procedure displays the found solution and di�erent measures like the executiontime, the total number of explored nodes, the number of operations on the priorityqueue, etc.2.2 The parallelismIn the case of a parallel Branch-and-Bound processes execute the search procedure.They must communicate in order to get work (nodes to be processed) and in order tomaintain a global knowledge of the lower/upper bound. In the literature, there has beenproposed many parallel algorithms which permit the management of work between pro-cesses. For example, in the case of a shared memory machine, processes concurrentlyaccess a common priority queue [6, 14, 17, 20, 27, 32]. For a distributed memory machineeach process locally manages a priority queue and maintains a workload by using a loadbalancing strategy [7, 18, 34]. Other algorithms [1, 8, 13, 25] are based on the client/serverLaboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 3model. A specialized process - the server - loads the nodes in a local priority queue. Theother processes - the clients - ask the server for nodes to be explored and send back thegenerated subtrees.From a conceptual point of view, all of these algorithms propose a management ofa global priority queue. Processes exploring nodes get their workload by executing analgorithm participating in the management of the global priority queue (GPQ).The notion of GPQ encapsulates two components :1. the parallel management algorithm (concurrent access protocol, load balancing, etc),2. the local or shared priority queue(s), founded on the sequential algorithms of priorityqueues.It is this important notion of global priority queue which has made the conception ofour BOB library possible. It permits an abstraction of the architecture of machines fromthe Branch-and-Bound algorithm point of view. That yields to a uni�ed search procedurefor the sequential as well as for the parallel exploration. Also, we should introduce thenotion of global lower/upper bound (GL/UB). The value of GL/UB must be known byall the processes. Whenever it is updated, this value should be di�used to all the otherprocesses in order to avoid redundant work. Quite often the parallel management ofGL/UB is tightly linked to the GPQ algorithm.2.3 The critical components of an applicationThis model of Branch-and-Bound program needs the �ve components described before.1. The initialization and the generation/evaluation procedure. They directlydepend on the nature of the problem to be treated. Therefore, the user of the libraryhas to write these functions.2. The global priority queue. It could use di�erent algorithms according to thearchitecture of the parallel machine and to the choice of the user. This componentsencapsulates the use of local as well as of shared priority queue algorithms.3. The local or shared priority queue(s). They are dependent on one side onthe choice of the algorithm (stack, search tree, etc), and on the other side of theparallelization selected (concurrent access, local access, particular operations, etc).4. The global lower/upper bound. The strategy of its management depends onthe architecture of the machine and on the choice of parallelization.5. The statistics and measures linked to the behavior of the algorithm.Only the functions of the �rst component can not be provided by the library becausethey depend on the problem to be treated. They must be developed by the user andcan be implemented without worrying about the problems of parallelization. Whereas thefunctions involved in the other components (2., 3., 4. and 5.) are independent of theLaboratoire PRiSM

4 PNN teamarchitecture of the machine and the choice of the user. For a given problem, they simplyneed to know the structure of the nodes of the search tree (the BobNode type). They couldbe implemented in the BOB library. Their use is done via calls to prede�ned functions.So, the di�erent types of management of parallelism are made transparent for the user.
Evaluation

Bob_GenChild()

...

GLOBAL PRIORITY QUEUE

PROCESS PROCESSPROCESS

GenerationFigure 1: A parallel Branch-and-Bound scheme.Figure 1 shows the interaction between the global priority queue, the processes andthe recursive calls of the generation/evaluation (branching/bounding) procedure.Another component managed by the library is the notion of priority. It could be eitherthe simple evaluation, either the evaluation and the depth of the node, either the poten-tiality [8]. This list is not exhaustive. The developer's guide contains all the explanationsto de�ne a new notion of priority. Once a new notion developed, it could be used in otherapplications.For the GL/UB, the library is conceived with the management of minimization andmaximization in mind. The user indicates in his application the bound he seeks to achieve(minimization or maximization).One of the goals of the library is to provide di�erent types of GPQ and of GL/UB inorder to test their e�ciency. Subsequently, the types that are best adapted to a particularmachine and a particular type of problems can be isolated. Thus, the BOB library canbe considered as a collection of libraries. Each of these libraries takes into account thechoice of the user and the architecture of the machine. When compiling his application,the user indicates the model of his machine as well as the options precising the type ofparallelization. We have chosen this method to avoid an overhead of execution due tothe choice of parallelization and to avoid an overhead in the size of the executable due tounused functions. The library takes also into account the handling of processes from theUNIX point of view as well as from a light process point of view (threads).We have de�ned the parameters of an executable program in BOB. They permit tospecify the number of processes, the "granularity" of computation, and the options fordisplaying the results and statistics. (cf. sections 5 and 6.5). Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 52.3.1 The global priority queueIn this section we detail the choices concerning the classi�cation of global priorityqueues proposed in BOB.On the �rst level, we classify the architectures of machines according to three families :serial, parallel with shared memory and parallel with distributed memory.In serial, the notion of global priority queue makes use but of one particular algorithmof local priority queue (heap, search tree, etc).
ASYNCHRONOUS Model

SYNCHRONOUS Model

FARM Model

PROCESS

PROCESS

PROCESS

One or several PQ in the shared memory (Partial locking)

One or several PQ in the shared memory

Cooperation for achieving the PQ operations

The server provides its clients with work

for each operation or group of operationsFigure 2: Classi�cation of GPQ on a shared memory machine.In the literature, there has been proposed many models to handle global priority queuesin parallel. We will detail three models for each parallel architecture.Asynchronous : Processes execute themselves the operations on local or shared priorityqueues. They do not cooperate to realize one or many operations. The GPQ can beseen as a priority queue with concurrent access (shared memory machines) or as aset of local priority queues with a queue per process and a load balancing strategy(distributed memory machines).Synchronous : Processes cooperate to realize a parallel operation (simultaneous inser-tions or deletions). The cooperation can exist in each operation. Particularly, in thedelete operation, processes can handle the deletion of nodes with the highest priorityin the GPQ.Farm (of processes) : In this model, one process (server) is specialized in the manage-ment of the GPQ. The "client" processes do the search and communicate with thisserver to obtain workload (nodes).Laboratoire PRiSM

6 PNN team
ASYNCHRONOUS Model

SYNCHRONOUS Model

FARM Model

PROCESS

PROCESS

PROCESS

Message exchanges to solve the

load balancing problem

Message exchanges to achieve

the global PQ operations

Message exchanges with the server for

each operation or group of operationsFigure 3: Classi�cation of GPQ on a distributed memory machine.Figures 2 and 3 represent graphically the classi�cation of GPQ's on the two architec-tures.These parallelizations are di�erent of each other not only in function of the architectureof the target machine but also in function of the semantics attached to the delete operation.In certain cases, the deleted node is not the best-valued node in the whole GPQ. Arelaxation of the notion of "best-valued" is often preferred on a very restrictive time of thedelete operation. The user must make his choice by taking into account this compromise.2.3.2 Local or shared priority queueAll of GPQ models need priority queues which are either local (sequential) or shared(capable of handling many partial locking protocols). BOB proposes di�erent types oflocal/shared priority queues :Heap D-Heap, Skew-Heap, Pairing-Heap, Leftist-Heap,Search trees Splay-tree (Semi-Tree, Simple-Tree, Single-Tree, Single-Simple-tree),Funnels Funnel-Tree, Funnel-Table.This non-exhaustive list indicates the available data-structures. However, anyone candevelop his own data-structures which can be totally new ones. In the case of sharedmemory machines, the priority queue(s) must handle concurrent access. We have de�nedthree mutual exclusion protocols for this case. In the �rst protocol, a process reservesan exclusive access to the priority queue for each operation. The two others are partialLaboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 7locking protocols [2, 9, 10, 23, 31]. Some priority queue algorithms might not handle certainprotocols. The user must choose the type of priority queue and the locking protocol hewants to use.3 Conceptual structure of the libraryFigure 4 presents the conceptual structure of BOB. The user must provide four func-tions describing his method of resolution. The de�nition of these functions is detailed insection 4.1. All other functions necessary for the Branch-and-Bound algorithm are han-dled by the kernel of the library. If users do not seek to provide BOB with new priorityqueues, load balancing strategies or parallelization methods, they do not need to know thefunctions of the kernel. A developer's guide of BOB is provided with the library.
Bob_Init(), Bob_GenChild(),
Bob_End(), Bob_PrintSolution().

Application

Bob_GPQIns()
Bob_GPQDel()
Bob_GPQGelG()
Bob_GPQAlloc()
Bob_GPQFree()

Bob_PriCreat()
Bob_PriGE()
Bob_PriE()
Bob_PriLE()
...

Bob_ULBInit()
Bob_ULBGet()
Bob_ULBUpd()
Bob_ULBSup()

User functions
(Evaluation, Initial solution, Construction of nodes)

BOB users’ functions

BOB kernel

Monitor

Statistics

−PQ
−LB
−Process
−Solution

Operations
 on the
Global PQ

Priorities
functions

Management
of the
GU/LB

Start of
processFigure 4: Functional structure of BOB.The main goal of the monitor is to provide statistics on the di�erent objects manipu-lated by an application (priority queues, workload of processes, number of load balancingoperations, ...). These informations make it possible for the user to analyze the di�erentparameters of his application (e�ciency of the evaluation function, the branching criterion,...) and to improve the choice of his parameters.4 Objects in the applicationThe objects manipulated by the application are of two origins. The ones are de�nedby the user for his application, the others are de�ned in the BOB library.Laboratoire PRiSM

8 PNN team4.1 Types and functions de�ned by the userThe user can freely choose the de�nition of these objects for his application; Never-theless, he should take into account the names of these types and functions.The typesBobNode This type must be a structure which de�nes a node of the search tree dependingon the application. The user is supposed to �ll this structure with the variableswhich de�ne an element of the search space proper to his application.BobSolution This type must represent the solution to the problem.The functionsInitialization : void Bob Init(BobArgc, BobArgv)This function regroups all the initializations that a Branch-and-Bound would need :the initial lower bound, the initial upper bound, the root of the search tree, the sizeof the problem and the best initial known solution.The parameters of this function represent the parameters passed to the C main()function. (classical form of argc and argv).The end : void Bob End()This function o�ers to the user the possibility to execute instructions speci�c to hisapplication at the end of the execution of the program.Display of the solution : void Bob PrintSolution(s)In general we write a Branch-and-Bound algorithm in order to �nd a solution to anoptimization problem. Hence, we have a function to display the best current knownsolution (BobSolution *s). This function will be executed each time a request ofdisplaying statistics is invoked.Generation of subproblems (child nodes) :void Bob GenChild(BobCurrNode, BobDepth, BobExpCt)In this function, the user writes the generation via the branching criterion of hischoice. He also writes the evaluation of child sub-problems of the current subproblemBobCurrNode of type BobNode. It makes part of the parameters list. The parameterBobDepth is the current exploration depth. The parameter BobExpCt is a pointerto a structure of type BobTExpCt giving among other informations the depth of theexploration (cf. paragraph 4.2).4.2 The types, variables and functions provided by the libraryThese prede�ned objects in the library can be used by the user in order to write hisapplication. He does not need to develop them. Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 9The typesBobTPri This type de�nes the priority of a node. The user can choose between di�erentnotions of priority for the best �rst search. The priority of a node is either its evalu-ation or its evaluation and its depth in the search tree. The notion of "potentiality"is expected among these choices [8].BobTid This type represents the identity of a process. This type will be di�erent accordingto the type of the target machine. The variable associated to this type is BobId.BobTExpCt This type regroups the useful informations for the control of the granularityof exploration.The variables Many global variables, that the user must initialize in the functionBob Init() are o�ered by the library :BobRoot: A pointer to a node of type BobNode. It represents the root of the search tree.The library accomplishes the task of inserting this node.BobPbSize: The initial size of the problem (optional).The functions The library proposes functions to handle the upper bound and the in-sertion in the data structure(s) containing nodes to be explored.1. Functions for the upper/lower bound :void Bob ULBInit(BobULB,s) : initialization of the global upper bound. The valueof the variable BobULB is given by the user. He must provide the variable scontaining the initial solution (BobSolution *).int Bob ULBGet() : returns the value of the global upper bound.int Bob ULBSup(BobEval) : tests if BobEval is lower/higher than the global lower/-upper bound BobULB.It returns1 if BobULB > BobEval,0 otherwise.int Bob ULBUpd(BobNewULB, BobNewSol) : this function tries to update the globalsolution.It returns1 if BobULB has been modi�ed,0 otherwise.This function deletes the obsolete nodes from the global structure, that is nodeshaving their evaluations strictly higher/lower than BobULB.Laboratoire PRiSM

10 PNN team2. Function to control the granularity : int Bob ExpCtrl(BobDepth, BobExpCt)Tests if the maximal depth of the exploration, allowed in the structure pointed toby BobExpCt, has been attained by the process calling this function.It returns1 if BobDepth is equal to the maximal depth of the exploration, 0 otherwise.In the case of parallel machines, this function tests also if the number of nodes in theglobal data structure is su�cient in order to give workload to all of the processes.3. Functions for the global data structure :void Bob GPQIns(BobCurrNode) : inserts the current node in the global priorityqueue.BobNode *Bob GPQDel() : deletes the node of type BobNode with the highest pri-ority in the global priority queue or in a part of the global priority queue (thecase for certain parallelizations).
main()

Bob_Main()

Bob_GoJob()

Bob_Init()

Bob_End()

Bob_GenChild()

Bob_Algo()

Bob_PQAlloc()

Bob_PQFree()

Bob_PQIns()

Bob_PQDel()

Bob_PQDelG()

Bob/Common/start.c

Bob/PQ/XXX.c

App/app.c

op.c

upbd.c

goprocs.c

ASC SYC FRM

Bob_GPQIns()

Bob_GPQDelG()

Bob_GPQFree()

Bob_GPQAlloc()

Bob_GPQDel()

Bob/ArchXXX/

Bob_ULBInit()

Bob_ULBSup()

Bob_ULBUpd()

Bob_ULBGet()

User
Functions Figure 5: Relations of BOB functions.Figure 5 gives another view of functions in the library. The arrows translate therelations calling-called between functions. Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 115 MonitorThe library proposes a "real-time" monitor giving statistics on the behavior of theapplication. Displaying the statistics as well as the current best solution is done by callingthe function Bob PrintStat(). Statistics are divided into two groups : Statistics on theactivity of one or many processes, and statistics on the state of the local/shared priorityqueue. At the end of the execution, all of the statistics as well as the execution times willbe displayed automatically.5.1 Activities of processesFor each of the architectures, statistics give informations on :� the number of generated (evaluated) nodes,� the number of non inserted nodes (with evaluation higher/lower than the boundGU/LB),� the number of inserted nodes,� the number of deleted nodes,� the number of deleted nodes by DeleteGreater (for which the bound GU/LB be-comes lower/higher than their evaluation),� the priority of the last deleted node.But in the case of parallelism, additional statistics depending on the selected paral-lelization are provided. For example, in the case of asynchronous GPQs on a distributedarchitecture (local priority queues with load balancing), the statistics provide the userwith the number of nodes sent, received, deleted and treated before �nding a solution.5.2 State of local or shared priority queuesStatistics on local or shared priority queues give informations on :� the number of nodes at a given moment.� the maximal number of nodes.� the priority of the last deleted node.Like for other objects, in the case of a parallel execution, additional informationsconcerning the parallelization are provided.6 Architecture of the library6.1 Organization of directoriesThe source code of the library is in the directory Bob. At the same level, we �nddirectories of di�erent applications. (Ex : Qap, TspLittle, TspDicho, TspPoly, Vcp, etc).Laboratoire PRiSM

12 PNN team
BB

TSP

VCP

QAP

ArchSEQ

ArchSHARED

ArchDISTRIB

PQ

Common start.c
makefile.com

ASC

ASC

SCY

SCY

Bob

FRM

FRM

JoSk.c futr.c futb.c Sp.c SiSp.c SiSmSp.c SmSp.c lh.c ph.c
makefile.pq

bb.h Define.h datastruct.h macro.h

Include

goproc.c makefile.arch

goproc.c makefile.arch

makefile.frm upbd.c op.c

goproc.c upbd.c op.c makefile.arch

Bin

Obj

machine1

machinen

makefile typedef.h source1.c source2.c ...

makefile.async makefile.ds makefile.lb
upbd.c FXDop.c MRGop.c ONEop.c

makefile.asc upbd.c SMPop.c XXXop.c

makefile.async makefile.ds makefile.lb
upbd.c op.c

makefile.async makefile.ds makefile.lb
upbd.c op.c

ArchiSEQ

ArchiSHARED

ArchiDISTRIB

define.h

define.h mrk_define.h ksr_define.h ...

define.h pvm_define.h pvm@ ...

lbs.cLoadbalFigure 6: Directories of the library.6.2 The Bob directoryIn Bob, we �nd six directories and one make�le (makefile.bb).Bob/Include contains the header �les (.h) common to all of the Branch-and-Bound.Bob/Common contains the �le start.c, this �le contains the following functions :� function main(),� function of study of parameters.It also contains the make�le speci�c to this �le.Bob/PQ contains the source �les of priority queues.Bob/ArchSEQ source for a serial run-time.Bob/ArchSHARED source for a parallel run-time with shared memory.Bob/ArchDISTRIB source for a parallel execution with distributed memory.makefile.bb This make�le directs the compilation towards the convenient architecture.Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 136.3 Directories of the architectures : ArchSEQ, ArchSHARED and ArchDISTRIBThese directories contain the source code handling the upper bound (upbd.c), theglobal data structure (op.c), as well as the source code for the parallel management ofprocesses (when it could have place) and for the statistics (goproc.c).Serial : Bob/ArchSEQ This directory contains the three �les listed above as well as themake�le makefile.arch.Parallel : Bob/ArchSHARED, Bob/ArchDISTRIB Each of these two parallel directoriescontains the goproc.c �le, a make�le called makefile.arch and three directories corre-sponding to the models of parallelization :ASC Directory containing the source code for handling the priority queue and the GU/LBin asynchronous mode.SYC Directory containing the source code for handling the priority queue and the GU/LBin synchronous mode.FRM Directory containing the source code for handling the priority queue and the GU/LBin the FARM mode where the priority queue(s) are handled by one server.Each of these three directories contains one or many source codes for algorithms ofmanagement of GPQs (op.c) and of GU/LB (upbd.c).Moreover, the directory Loadbal in Bob/ArchDISTRIB, concerns a distributed imple-mentation. This directory contains two functions associated to the load balancing; Onefunction controls the workload of a processes (Bob LBalCtrl()), and the second one regu-lates this workload (Bob LBal()) for a better exploitation of the distributed machine (cf.Developer's guide for more details).6.4 Portability of the libraryBOB must be portable. The serial part of BOB does not cause any problem since ituses the standard environment of UNIX. However, this is not the case for the parallel partsof Bob. BOB necessitates, on a shared memory machine, the use use of mutual exclusionprimitives. BOB uses a set of C macros, allowing the generation of these primitives.The correspondence between this set of macros and the functions present on the parallelmachine is done via a con�guration �le. Actually, the library has been ported on KSR1and on Sequent Balance.The distributed part of BOB works on PVM which seems to be a standard for dis-tributed memory machines and for networks of workstations. But in order not to limitBOB to this library of exchange of messages, BOB can work on a set of macros, whichcan be corresponding PVM calls or functions implementing PVM calls on top of a par-ticular library. This is used for the primitives of sending/receiving messages. In whatconcerns launching processes, the code can be written in the goproc.c �le without beingforced to simulate the PVM calls for handling processes. Let us note that BOB has beenLaboratoire PRiSM

14 PNN teamported on the distributed machine PARAGON, with a communication library proper tothe INTEL parallel machines. The developer's guide contains a complete explanation onthe procedure to follow in order to port BOB on a particular parallel machine.6.5 Compilation and execution6.5.1 CompilationThe compilation of an application is done via the command make. Since BOB is com-posed of a set of distinct and/or dependent sub-libraries, the process of compilation inBOB is a sequence of "recursive" calls to the command make. Each call handles one com-ponent of the library. The command make invoked by the user in the application directory,will call another make command in the selected or given architecture directory in order tocompile the GPQ and the GU/LB requested. Then the �le Common/start.c will be com-piled. Finally, this last one will call another make command on the �le PQ/makefile.pqwhich will generate the executable.By default, all the possible executables of the target machine will be generated. We donot recommend this method since the number of di�erent executables will be enormousgiven the number of di�erent possible combinations. It is possible to de�ne a set ofexecutables to be generated via the environment variables passed to the command make.We can not detail here all the environment variables corresponding to the di�erent possiblecombinations. Please refer to the documentation provided with the library in order to knowthe choices provided. Hereafter, we will describe the principle variables :PRTP notion of priority EVAL (evaluation), EVDP (evaluation+depth), POTE (potentiality).PQTP local or shared priority queues algorithm SKEW, FUNNEL, SPLAY, HEAP, OTHERS. If thequeue is shared, the locking protocol PLTP could be EXC, LCK, MRK.ARTP type of the architecture : SEQ, SHARED or DISTRIB. For a parallel data structure :MDTP type of the method used ASC, SYC, FRM.DSTP representation of the structure.LBTP load balancing strategyThe command executed in the directory Qap on KSR1:make PRTP=EVAL ARTP=SHARED MDTP=ASC DSTP=FXD LBTP=2 PLTP=MRK PQTP=SKEWwill generate the executable corresponding to a parallel Branch-and-Bound resolving theQAP on KSR1 with an asynchronous data structure of type FXD with the load balancingstrategy 2; The priority queue used will be the Skew-Heap, with the partial locking protocolwhich uses the marking technique. The executable will be in the directory Qap/Bin/ksr1and will be called EVALASCFXD5MRKskh.Even though this type of names for executables is rather complicated, it has the ad-vantage of di�erentiating the executables according to the choice of the user.Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 156.5.2 The executableWe have de�ned the parameters that an application BOB can take.exec [-p NbProc[:NbDS]] [-v Stat] [-d MaxDepth[:TypeDepth]] ...-p NbProcs[:NbDS] de�nes the number of processes and the number of data structures(reserved to the parallelism).-v Stat de�nes the level of statistics.-d MaxDepth[:TypeDepth] de�nes the granularity of computation (in number of levels)and the type of computation (each process can have a di�erent granularity calculatedaccording to a function).... parameters reserved to the application.7 The development of an applicationWe present a kernel of a Branch-and-Bound program using the library BOB. The �lescited must exist in the application directory. This example is taken and detailed in theuser's guide provided with the library.7.1 The header �le typedef.hAll the de�nitions of macros and structures must be regrouped in a header �le in orderto be accessible by the di�erent source �les of the library. We call it typedef.h but anothername could be chosen as well.If the optimization problem consists of maximizing a cost function, the �le typedef.hmust contain the following line :#define ORTP MAXIMISATIONThe default con�guration of BOB is for the minimization.The type BobNode must be de�ned in the header �le. The two mandatory �elds arePri of type BobTPri and BobNdInfo of type BobTNdInfo. The names of these �elds cannot be altered. Otherwise, BOB does not recognize them.BOB needs also a type called BobSolution which describes the solution of the opti-mization problem being handled./*--- BobNode structure for the simulation of a Branch and Bound ---*/typedef struct {BobTNdInfo BobNdInfo; /* Node informations (read only) */int Depth; /* Node depth */... /* Informations relative to the application */...BobTPri Pri; /* Node priority */} BobNode;typedef struct {int Sol[100];} BobSolution;Laboratoire PRiSM

16 PNN team7.2 The source �le(s)In this application, all of the functions have been grouped into one source �le that wecall app.c./*------------------- Include the header files ------------------*/#include <stdio.h>#include <math.h>#include "../Bob/Include/bb.h"/*---*/void Bob_GenChild(an,Depth,ExpCt)BobNode *an;int Depth;BobTExpCt *ExpCt;{ BobNode *n;int Eval,dp;dp = an->Depth+1; /* Sons depth */for (i=0; i<NBSONS ; i++) { /* Generation loop for the NBSONS sons */n = (BobNode *)Bob_NodeAlloc(0); /* Memory allocation for the sons */if (n==NULL) {fprintf(stderr,"Memory error\n");return;}Branch(i,an,n);Eval = Evaluate(n);Bob_PRICREAT(n->Pri,Eval,0,dp); /* Creation of the son's priority */Bob_STEXP(); /* Number of the evaluated nodes */if (Bob_ULBSup(n->Pri)) { /* Compare to the GU/LB */if (Bob_ExpCtrl(prof+1,ExpCt)) {/* Compare to the maximal depth */Bob_GenChild(n,prof+1,ExpCt); /* Depth-first traversal */Bob_NodeFree(n); /* Free the son node */} elseBob_GPQIns(n); /* Insert into the priority queue */} else {Bob_STNIS(); /* Number of the unexplored nodes */Bob_NodeFree(n); /* Free the son node */}}}/*---*/void Bob_Init(n,v)int n;char **v;{ int bs;int Eval;BobSolution Sol;if (n!=NbParameters) {fprintf(stderr,"Parameter error :\n");exit(1);}BobPbSize = ProblemSize(); /* Problem's size */bs = InitialSolution(&Sol); /* Initialization of the initial solution */Bob_ULBInit(bs,&Sol); /* and the initial GU/LB */BobRoot=(BobNode *)Bob_NodeAlloc(0); /* Allocation of the root node */if (BobRoot==NULL) {fprintf(stderr,"Memory error\n");return;}Eval = Evaluate(BobRoot);Bob_PRICREAT(BobRoot->Pri,Eval,0,0); /* Creation of the son's priority */ Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 17}/*---*/void Bob_End() {printf("The End !\n");}/*---*/void Bob_PrintSolution(s)BobSolution *s;{int i;for (i=0;i<BobPbSize ; i++) {printf("%2d ",s->Sol[i]);}printf("\n");}7.3 The �le makefileThe makefile in the application directory is the �rst one called in order to constructthe executable. The variables to be de�ned are :OBJAPP containing all the objects (.o) of the application.INC containing the header �le of your application.For each one of the source �les, the commands concerning its compilation must bewritten on three di�erent lines. In our case, the �le makefile is:LDIR = ../BobOBJ = Obj/$(HOSTTYPE)/$(PRTP)OBJAPP= $(OBJ)app.oDEBUG =APPDEBUG = $(DEBUG)INC = ../../App/typedef.hDSFLAG = $(ARTP) ARTP=$(ARTP) PRTP=$(PRTP) OBJAPP="$(OBJAPP)" INC=$(INC) DEBUG=$(DEBUG)all : $(OBJAPP)make -f $(LDIR)/makefile.bb $(DSFLAG)$(OBJ)app.o : app.c typedef.hcc -c app.c $(APPDEBUG) -DAPPINC=\"$(INC)\" -DPRTP=$(PRTP)mv app.o $(OBJ)app.o8 Conclusion and perspectivesIn this report we have presented a library to help the user willing to develop applica-tions using the Branch-and-Bound method. We think that BOB can be used by the vastmajority of researchers in the Combinatorial Optimization and in the Parallel Algorith-mic �elds. But there is still a lot of work to be done from provided parallelizations andresolved problems point of view. However, what seems to be more urgent for BOB is agraphics interface. Statistics are presented for the moment in a textual format (ASCII)and only upon the request of the user. A graphics interface representing the evolutionLaboratoire PRiSM

18 PNN teamof the activity of processes and the state of di�erent data structures, under the form ofcurves, would be interesting.The compilation of the application remains a di�cult task. We are planning to write agraphical interfacing tool which permits to choose easily between the di�erent compilationparameters.We plan too to implement di�erent strategies to control the granularity. At the mo-ment the granularity of exploration (see section 2), is �xed for an execution. We plan toimplement strategies where the granularity is updated while the execution depending onthe depth of the current node, the load of the di�erent process and the gap between theevaluation of the current node and the value of best known solution.With little learning, BOB gives the possibility to write Branch-and-Bound programsby concentrating only on the "interesting" parts of the resolution method. With very littlee�ort, the program can be executed on a shared or distributed memory machine or on asimple network of workstations. This can help resolve more quickly larger problems. If thelibrary BOB is used by a large number of researchers in the Combinatorial Optimizationdomain, it can become a mean to test and compare the parallelizations developed ona great number of real problems. While for the time being, parallelizations are beingdeveloped on simple problems from the literature. Thus the BOB library can facilitate theexchange between the two �elds of Combinatorial Optimization and Parallel Algorithmic,an exchange that we hope bene�cial.At this point, the sequential part of the BOB Library and the QAP, TSP, VCP ap-plications could be reach at http://www.prism.uvsq.fr/english/parallelcr/bob us.html Thebob team could also be reach by email at bobteam@prism.uvsq.fr.References[1] Bena��chouche (M.). { M�ethodes de recherche arborescentes parall�eles : Branch &bound distribu�e. In : 7�eme Journn�ees Internationales des Sciences Informatiques,JISI'94, Tunis Tunisie, pp. 266{282. { 1994.[2] Calhoun (J.) et Ford (R.). { Concurrency control mechanisms and the serializabilityof concurrent tree algorithms. In : of the 3rd ACM SIGACT-SIGMOD Symposiumon Principles of Database Systems. { Waterloo Ontario, Avr. 1984. Debut de latheorie sur la serializability.[3] Corrêa (R.) et Ferreira (A.). { Parallel best-�rst branch-and-bound in discrete opti-mization : a framework. { Rapport technique n� 95{03, DIMACS, Rutgers University,Mars 1995.[4] Cung (V.-D.). { Contribution �a l'Algorithmique Non Num�erique Parall�ele : Explo-ration d'Espaces de Recherche. { 4, Place Jussieu, 75252 Paris Cedex 05, FRANCE,Th�ese de PhD, Universit�e Pierre et Marie Curie { Paris VI, Avr. 1994. In French.Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 19[5] Cung (V.-D.), Dowaji (S.), Le Cun (B.), Mautor (T.) et Roucairol (C.). { Concur-rent data structures and load balancing strategies for parallel branch-and-bound/a*algorithms. In : DIMACS Challenge 3 Workshop. { Oct. 1994.[6] Cung (V.-D.) et Le Cun (B.). { An e�cient implementation of parallel a*. In : Paralleland Distributed Computing : Theory and Practice. Proceedings of the First Canada-France Conference on Parallel Computing, �ed. par Cosnard (M.), Ferreira (A.) etPeters (J.), pp. 153{168. { Mai 1994.[7] Dowaji (S.). { �Equilibrage de Charge (EC) en Milieu Distribu�e. { Rapport techniquen� 92.101, Labo. MASI - Universit�e PARIS VI - 4, Place Jussieu - 75252 PARISCEDEX 05, Laboratoire MASI, d�ecembre 1992.[8] Dowaji (S.) et Roucairol (C.). { In
uence of priority of tasks on load balancingstrategies for distributed branch-and-bound algorithms. In : 9th International Par-allel Processing Symposium (IPPS'95) - Workshop on Solving Irregular Problems onDistributed Memory Machines, pp. 83{90. { Santa Barbara (USA), April 25-28 1994.[9] Ellis (C.). { Concurrent search and insertion in 2-3 trees. Acta Informatica, vol. 14,1980, pp. 63{86.[10] Ellis (C.). { Concurrent search and insertion in avl trees. IEEE Trans. on Cumputers,vol. C-29, n� 9, Sept. 1981, pp. 811{817.[11] Finkel (R.) et Manber (U.). { Dib - a distributed implementation of backtracking.ACM Transactions on Programming Languages and Systems, vol. 9, n� 2, Avr. 1987,pp. 235{256.[12] Grama (A. Y.) et Kumar (V.). { A survey of parallel search algorithms for discreteoptimization problems. { Personnal communication, 1993.[13] Hajian (M.), Hai (I.) et Mitra (G.). { A Distributed Processing Algorithm For Solv-ing Integer Programs Using a Cluster Of Workstations. { Rapport technique n�TR/14/94, Department of Mathematics and Statistics, 1994.[14] Hiromoto (U.), Masafumi (Y.), Masaharu (I.) et Toshihide (I.). { Parallel searches ofgame trees. Systems and Computers in Japan, vol. 18, n� 8, 1987, pp. 97{109.[15] Ibaraki (T.). { Game solving procedure h* is unsurpassed. In : Discrete Algorithmsand Complexity, �ed. par Johnson (D. S.) et al., pp. 185{200. { 1987.[16] Kal�e (L.) et Saletore (V. A.). { Parallel state-space search for a �rst solution withconsistent linear speedups. International Journal of Parallel Programming, vol. 19,n� 4, 1990, pp. 251{293.[17] Kanal (L. N.) et Kumar (V.). { Parallel implementation of a structural analysisalgorithm. IEEE Pattern Recognition and Image Processing, 1981, pp. 452{458.Laboratoire PRiSM

20 PNN team[18] Kumar (V.), Ananth (G. Y.) et Rao (V. N.). { Scalable Load Balancing Techniquesfor Parallel Computers. { TR n� 91-55, University of Minnesota, Nov. 1991.[19] Kumar (V.) et Kanal (L. N.). { A general branch and bound formulation for un-derstanding and synthesizing and/or tree search procedures. Arti�cial Intelligence,vol. 21, n� 1, 2, 1983, pp. 179{198. { Reprinted in the book Search and Heuristicsedited by Judea Pearl.[20] Kumar (V.) et Kanal (L. N.). { Parallel branch-and-bound formulations for and/ortree search. IEEE Transactions on Pattern Analysis and Machine Intelligence,vol. PAMI-6, n� 6, Nov. 1984, pp. 768{778.[21] Kumar (V.), Ramesh (K.) et Rao (V. N.). { Parallel best-�rst search of state-spacegraphs : A summary of results. The AAAI Conference, 1987, pp. 122{127.[22] Lawler (E.) et Wood (D.). { Branch-and-bound methods : a survey. Operations Re-search, vol. 14, 1966, pp. 699{719.[23] Le Cun (B.), Mans (B.) et Roucairol (C.). { Op�erations concurrentes et �les depriorit�e. { RR n� 1548, INRIA-Rocquencourt, 1991.[24] Li (G.) et Wah (B. W.). { Coping with anomalies in parallel branch-and-boundalgorithms. IEEE Transaction on Computers, vol. 6, n� C-35, Juin 1986, pp. 568{573.[25] Li (T.). { Parallel imprecise iterative deepening for combinatorial optimization. In-ternational Journal of High Speed Computing, vol. 3, n� 1, 1991, pp. 63{76.[26] Mans (B.). { Contribution �a l'Algorithmique Non Num�erique Parall�ele : Par-all�elisation de M�ethodes de Recherche Arborescente. { Th�ese de doctorat, Universit�eParis 6, Juin 1992.[27] Mans (B.) et Roucairol (C.). { Concurrency in priority queues for branch and boundalgorithms. { RR n� 1311, INRIA-Rocquencourt, Oct. 1990.[28] Nilsson (N. J.). { Principles of Arti�cial Intelligence. { Tioga Publishing Co., 1980.[29] Pearl (J.). { Heuristics. { Addison-Wesley, 1984.[30] Powley (C.), Ferguson (C.) et Korf (R. E.). { Parallel heuristic search : Two ap-proaches. In : Parallel Algorithms for Machine Intelligence and Vision, pp. 42{65. {Kumar and Kanal, 1990.[31] Rao (V.) et Kumar (V.). { Concurrent insertions and deletions in a priority queue.IEEE proceedings of International Conference on Parallele Processing, 1988, pp. 207{211.[32] Rao (V. N.), Kumar (V.) et Ramesh (K.). { Parallel Heuristic Search on SharedMemory Multiprocessors : Preliminary Results. { Rapport technique n� AI85-45,Arti�cial Intelligence Laboratory, The University of Texas at Austin, Juin 1987.Laboratoire PRiSM

BOB : a Uni�ed Platform for Implementing Branch-and-Bound like Algorithms 21[33] Roucairol (C.). { Recherche arborescente en parall�ele. { RR n� M.A.S.I. 90.4, InstitutBlaise Pascal - Paris VI, 1990. In French.[34] Talbi (E.). { Allocation dynamique de processus dans les syst�emes distribu�es et par-all�eles : Etat de l'art. { Rapport technique n� 162, Laboratoire d'Informatique Fon-damentale de Lille, 1995.[35] Tsch�oke (S.). { A portable parallel branch-and-bound library. In : DIMACS-Challenge 3 Workshop. { Oct. 1994.[36] Wah (B. W.), jie Li (G.) et Yu (C. F.). { Multiprocessing of combinatorial searchproblems. IEEE Computer, Juin 1985, pp. 93{108.

Laboratoire PRiSM

Laboratoire PRiSM, Universit�e de Versailles - Saint Quentin en Yvelines,45 avenue des �Etat-Unis, 78035 Versailles Cedex, FRANCE.

