
BiqCrunch 2.0 User Guide

Nathan Krislock, Jérôme Malick, Frédéric Roupin

May 2, 2016

Summary
BiqCrunch is a semidefinite-based solver for binary quadratic problems. It uses a branch-
and-bound method featuring an improved semidefinite bounding procedure [8], combined
with a polyhedral approach (see [5, 4] for details).

BiqCrunch is written in C and Fortran and uses the external library L-BFGS-B [2] for
quasi-Newton bound-constrained optimization and the branch-and-bound framework BOB
[7]. BiqCrunch uses specific BC input files, and an LP format conversion tool is provided.
People involved with the development of BiqCrunch are

• Nathan Krislock (krislock@math.niu.edu)

• Jérôme Malick (jerome.malick@inria.fr)

• Frédéric Roupin (Frederic.Roupin@lipn.univ-paris13.fr)

Project contributors:

• Marco Casazza: BiqCrunch web site, documentation

• Geoffrey Kozak: heuristics for the Maximum Independent Set Problem

BiqCrunch - User’s Guide 2

mailto:krislock@math.niu.edu
mailto:jerome.malick@inria.fr
mailto:Frederic.Roupin@lipn.univ-paris13.fr
http://www-lipn.univ-paris13.fr/BiqCrunch

Contents

1 BiqCrunch 4
1.1 Installation . 4
1.2 Usage . 5
1.3 Conversion tools . 5
1.4 Input format . 5

1.4.1 Example . 5
1.5 Output . 6

2 Advanced usage 9
2.1 BiqCrunch Parameters . 9
2.2 Instance syntax . 10
2.3 Heuristics . 12

2.3.1 Generic heuristics . 12
2.3.2 Heuristic timing . 12
2.3.3 Additional functions . 13
2.3.4 Data structures . 14

3 Examples 16
3.1 Max-Cut problem . 16

3.1.1 Max-Cut heuristic . 16
3.1.2 Conversion tools . 16

3.2 k-cluster problem . 17
3.2.1 k-cluster heuristic . 17
3.2.2 k-cluster instances and conversion 17

3.3 Maximum independent set problem . 17
3.3.1 Maximum independent set heuristics 18

BiqCrunch - User’s Guide 3

http://www-lipn.univ-paris13.fr/BiqCrunch

1 BiqCrunch

BiqCrunch is released under the GNU Public License, version 3.0, as open source software
available for non-commercial use. BiqCrunch is available at:

http://www-lipn.univ-paris13.fr/BiqCrunch/

New features of this release :
• Performance improvement: see the new numerical results on the website.

• The code has been refactored, cleaned, simplified, and formatted to improve readability
and maintainability.

• The Goemans-Williamson heuristic is now the default generic heuristic.

• New parameters soln_value_provided and soln_value can be used to provide the
objective value of a known feasible solution. This makes it possible to use BiqCrunch
to prove the optimality of a solution obtained by a heuristic, for example.

• New branchingStrategy parameter can be used to select the branching strategy
(three strategies are available).

• Local-search routine (can be disabled with parameter local_search) that is called
whenever the heuristic finds a feasible solution.

• New seed parameter for seeding the random number generator.

• Improved output format for both the terminal output and the more detailed output
file.

• For a given problem, user can take advantage of specific constraints to fix the values
of variables when branching (a user-function must be defined).

1.1 Installation
Extract the files from the archive “biqcrunch.tar.gz”. To compile and test BiqCrunch
go to the src directory then run the following commands:
$ make
$ source runtests.sh

This will produce specific binary files for each problem subdirectory located in the
problems/ directory. This allows one to execute BiqCrunch with a specific heuristic for
each problem. If your problem does not appear, it is always possible to use the generic
version of the solver in the problems/generic/ directory, or add your own heuristic (details
are given in this documentation). Installation from the source files requires either LAPACK
or the Intel MKL libraries. If MKL is available then it will be used by default.

BiqCrunch - User’s Guide 4

http://www-lipn.univ-paris13.fr/BiqCrunch/
http://www-lipn.univ-paris13.fr/BiqCrunch

1.2 Usage
To run BiqCrunch just use the specific problem version that can be found in the corre-
sponding subdirectory in problems/.

$./biqcrunch [-v (0|1)] <INSTANCE> <PARAMETERS>

The parameter -v is the verbosity of BiqCrunch and <INSTANCE> is the input file in the
BC format. If the -v flag is missing then BiqCrunch will use the non-verbose option. Be
cautious: the verbose option can produce large output files for some problems. The more
verbose option is mainly useful for testing different parameters values by giving additional
information during the evaluation of each node of the search tree. During the solving
process, some information will be displayed on screen. In particular, each time a better
feasible solution is found, the node number and the new value will be provided.
At the end of the command a parameters file is required (note that several files are

provided for different problems). A complete description of these parameters is given in
Section 2.

1.3 Conversion tools
BiqCrunch uses a specific input file format (see the next section for a complete description).
Nevertheless an LP file format conversion tool (tools/lp2bc.py, written in Python) is
provided. Moreover, for each problem, some specific tools are also provided to convert
standard instances (e.g., a graph generated by rudy) to BC files. To get usage information,
just run the corresponding tool without parameters. All these tools are written in standard
C and can be compiled in a straightforward manner.

1.4 Input format
BiqCrunch solves any problem that can be stated as

maximize xTS0x+ sT
0 x

subject to xTSix+ sT
i x ≤ ai, i ∈ {1, . . . ,mI}

xTSix+ sT
i x = ai, i ∈ {mI + 1, . . . ,mI +mE}

x ∈ {0, 1}n

(1.1)

where xTSix+ sT
i x is a quadratic function with integer coefficients, for i = 0, . . . ,mI +mE,

and a is an integer vector. The problem has to be written in BC format which uses a sparse
representation, similar to the sparse SDPA format. The objective function and constraint
coefficients are described as (n+ 1)× (n+ 1) matrices, linear terms being stored in the last

line/column: Qi =
[
Si

si

2
sT

i

2 0

]
.

Some input files for BiqCrunch are provided for several problems (see section Examples).

1.4.1 Example
Model

maximize 20x1x3 + 26x1x4 + 23x2x3 + 8x2x5 + 32x3x4 + 13x4x5

subject to x1 + x2 + x3 + x4 + x5 = 3
12x1x3 + 24x1x4 + 14x2x3 + 16x2x5 + 28x3x4 + 12x4x5 ≤ 30
x ∈ {0, 1}5

BiqCrunch - User’s Guide 5

http://www-lipn.univ-paris13.fr/BiqCrunch

LP file
Maximize

20 x1*x3 + 26 x1*x4 + 23 x2*x3 +
8 x2*x5 + 32 x3*x4 + 13 x4*x5

Subject to
x1 + x2 + x3 + x4 + x5 = 3

12 x1*x3 + 24 x1*x4 + 14 x2*x3 +
16 x2*x5 + 28 x3*x4 + 12 x4*x5 <= 30

Binary
x1 x2 x3 x4 x5

End

BC file (generated by lp2bc.py)
List of binary variables:
1: x1
2: x2
3: x3
4: x4
5: x5
1 = max problem
2 = number of constraints
2 = number of blocks
6, -1
3.0 30.0
0 1 1 3 10.0
0 1 1 4 13.0
0 1 2 3 11.5
0 1 2 5 4.0
0 1 3 4 16.0
0 1 4 5 6.5
1 1 1 6 0.5
1 1 2 6 0.5
1 1 3 6 0.5
1 1 4 6 0.5
1 1 5 6 0.5
2 1 1 3 6.0
2 1 1 4 12.0
2 1 2 3 7.0
2 1 2 5 8.0
2 1 3 4 14.0
2 1 4 5 6.0
2 2 1 1 1.0

1.5 Output
BiqCrunch provides detailed information during the solving process and an output file is
generated using the name of the input file (same directory).
Example of screen output: ./biqcrunch -v 1 example.bc biq_crunch.param

Output file: example.bc.output
Input file: example.bc
Parameter file: biq_crunch.param

BiqCrunch - User’s Guide 6

http://www-lipn.univ-paris13.fr/BiqCrunch

Node 0 Feasible solution 43
Nodes = 3
Root node bound = 47.43
Maximum value = 43
Solution = { 1 2 3 }
CPU time = 0.0045 s

Example of output file: ./biqcrunch -v 1 example.bc biq_crunch.param

* BIQ CRUNCH 2.0 Solver *

| Copyright(C) 2010-2016 N. Krislock, J. Malick, F. Roupin |
| BIQ CRUNCH uses L-BFGS-B by C. Zhu, R. Byrd, J. Nocedal and BOB 1.0 by PNN |
| Team of PRiSM Laboratory. |
| |
| L-BFGS-B is distributed under the terms of the New BSD License. See the |
| website http://users.eecs.northwestern.edu/~nocedal/lbfgsb.html for more |
| information. BOB is free software. For more information visit the website |
| http://www.prism.uvsq.fr/~blec/index.php?p=./rech/so&lang=fr |

Input file: example.bc
Solving as a MAXIMIZATION problem
Problem Size = 5 Number of equalities = 7 Number of inequalities = 1
Using Generic heuristic
BiqCrunch Parameters:

alpha0 = 0.100000
scaleAlpha = 0.500000

minAlpha = 0.000050
tol0 = 0.100000

scaleTol = 0.950000
minTol = 0.010000

withCuts = 1
gapCuts = -0.050000

cuts = 500
minCuts = 50

nitermax = 2000
minNiter = 12
maxNiter = 100
scaling = 1

root = 0
heur_1 = 1
heur_2 = 1
heur_3 = 1

soln_value_provided = 0
soln_value = 0
time_limit = 0

branchingStrategy = 1
seed = 2016

NBGW1 = 1
NBGW2 = 10

local_search = 1
Heuristic 1: Beta updated => 43

**
Node 1

**
Problem size 5
Fixed variables:
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCut NCut NSub NAdd
==

1 0.0 4.6 1e-01 1e-01 24 5e-02 0e+00 5e+01 -3e-01 13 -0 +13
2 0.0 4.5 5e-02 1e-01 5 5e-02 9e-02 5e+01 -1e-01 31 -0 +18
3 0.0 4.4 3e-02 9e-02 7 4e-02 3e-02 5e+01 -7e-02 41 -0 +10
4 0.0 4.4 1e-02 9e-02 8 5e-02 3e-02 5e+01 -3e-02 41 -0 +0
5 0.0 4.4 6e-03 8e-02 4 6e-02 7e-02 5e+01 -2e-01 60 -0 +19
6 0.0 4.4 3e-03 8e-02 6 2e-02 0e+00 5e+01 3e-03 60 -0 +0
7 0.0 4.4 2e-03 7e-02 5 2e-02 5e-02 5e+01 -5e-02 60 -0 +0
8 0.0 4.4 8e-04 7e-02 6 2e-02 6e-02 5e+01 -6e-02 60 -0 +0
9 0.0 4.4 4e-04 7e-02 6 2e-02 6e-02 5e+01 -6e-02 60 -0 +0

10 0.0 4.4 2e-04 6e-02 6 2e-02 6e-02 5e+01 -6e-02 60 -0 +0
11 0.0 4.4 1e-04 6e-02 7 2e-02 6e-02 5e+01 -6e-02 60 -0 +0
12 0.0 4.4 5e-05 6e-02 13 4e-02 0e+00 5e+01 nan 60 -0 +0

==
Giving up! Bound = 47.43, Iter = 12, alpha = 5e-05, tol = 6e-02, cuts = 60, time = 0.0
==
Depth = 0, Bound = 47, Best = 43

Branching on x[3] = 0.04
Fixing x[3] = 0

**
Node 2

**
Problem size 4
Fixed variables: (x[3],0)
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCut NCut NSub NAdd
==

1 0.0 2.2 1e-01 1e-01 12 5e-02 0e+00 4e+01 -1e-01 6 -0 +6
2 0.0 0.8 5e-02 1e-01 22 1e-01 0e+00 5e+01 nan 6 -0 +0

==

BiqCrunch - User’s Guide 7

http://www-lipn.univ-paris13.fr/BiqCrunch

Prune! Bound = 43.78, Iter = 2, alpha = 5e-02, tol = 1e-01, cuts = 6, time = 0.0
==
Depth = 1, Bound = 43, Best = 43

Fixing x[3] = 1

**
Node 3

**
Problem size 4
Fixed variables: (x[3],1)
==
Iter Time gap alpha tol nbit Enorm Inorm ynorm minCut NCut NSub NAdd
==

1 0.0 0.9 1e-01 1e-01 24 3e-01 0e+00 6e+01 nan 0 -0 +0
==
Prune! Bound = 43.90, Iter = 1, alpha = 1e-01, tol = 1e-01, cuts = 0, time = 0.0
==
Depth = 1, Bound = 43, Best = 43

Nodes = 3
Root node bound = 47.43
Maximum value = 43
Solution = { 1 2 3 }
CPU time = 0.0045 s

BiqCrunch can be also used as a simple semidefinite solver to get a bound (further details
are given about parameters in Section 2). Hereafter, the same small example is run with
the parameter file bound.param (provided in the biqcrunch/ folder). In the first test, all
the heuristics are disabled and so no lower bound (given by a feasible solution) is available.
In the second run, the heuristics are enabled (see Section 2.1).
Example of screen file: ./biqcrunch -v 1 example.bc bound.param

Output file: example.bc.output_1
Input file: example.bc
Parameter file: bound.param
Nodes = 1
Root node bound = 47.32536
Best value = inf
Gap = 100.00%
CPU time = 0.0037 s

Output file: example.bc.output_2
Input file: example.bc
Parameter file: bound.param
Node 0 Feasible solution 43
Nodes = 1
Root node bound = 47.32536
Best value = 43
Gap = 10.06%
CPU time = 0.0038 s

BiqCrunch - User’s Guide 8

http://www-lipn.univ-paris13.fr/BiqCrunch

2 Advanced usage

BiqCrunch will not modify your model before solving it, so be cautious when modeling
your problem. The semidefinite bound and the efficiency of the solver could be affected. In
particular, if one wants to get a stronger underlying semidefinite relaxation, some extra
constraints (redundant in the initial 0-1 model) should be added in the model. A small
example illustrating this point is provided in /problems/generic/examples/.

2.1 BiqCrunch Parameters
In most cases, BiqCrunch will be efficient using the default parameters. Nevertheless, to
improve the performance of BiqCrunch for some problems it is sometimes a good idea to
adjust the values of some of the key parameters. These values (especially for the bounding
parameters) can have a huge impact on the efficiency of the solver. For more details the
reader is referred to [4, 8].

General parameters
root: 1 to stop the algorithm after the evaluation of the root node (default=0). Thus

BiqCrunch can be used as a simple solver to test a relaxation (computational time
and gap). This option is also useful when adjusting parameters by inspecting several
output files for the root node (verbosity command line option -v 1 should be used in
that case);

time_limit: maximum running time in seconds. Set to 0 for no time limit (default=0). If
the solver stops before solving the problem exactly then the final gap (between the
worst bound in the search tree and the value of current best feasible solution found)
will be provided;

heur_1: enable (1) or disable (0) the heuristic called at the beginning of the execution
(default=1);

heur_2: enable (1) or disable (0) the heuristic called after each call of L-BFGS-B during
the computation of the bound (default=1);

heur_3: enable (1) or disable (0) the heuristic called after the evaluation of a node
(default=1);

seed: random number generator seed. In particular, this seed is used for the Goemans-
Williamson heuristic (default heuristic) (default=2016);

local_search: enable (1) or disable (0) a simple “1-opt” local-search. This local-search
routine returns a solution that is locally optimal starting from a feasible solution
provided by each heuristic;

BiqCrunch - User’s Guide 9

http://www-lipn.univ-paris13.fr/BiqCrunch

branchingStrategy: (0) Branch on least-fractional variable, (1) Branch on most-fractional
variable, (2) Branch on variable that is closest to one (default=1);

soln_value_provided: user is providing a known feasible solution value (default=0);

soln_value: the value of a known feasible solution (default=none).

Bounding parameters
alpha0: starting value of alpha (default=1e-1);

scaleAlpha: scaling value of alpha (default=0.5). This parameter controls the rate at
which alpha decreases;

minAlpha: minimum value of alpha (default=5e-5);

tol0: starting value of tolerance (default=1e-1);

scaleTol: scaling value of tolerance (default=0.95);

minTol: minimum value of the tolerance (default=1e-2);

gapCuts: minimum violation value to add a cut (default=-5e-2);

withCuts: 1 to add triangle inequalities during the computation of the bound, 0 to compute
the bound without the triangle inequalities (default=1);

cuts: maximum number of inequalities to add at each iteration (default=500);

minCuts: alpha and tolerance will be reduced when the number of added triangle inequali-
ties is below this value (default=50);

nitermax: maximum number of iterations of the L-BFGS-B solver (default=2000);

minNiter: minimum number of L-BFGS-B calls (default=12);

maxNiter: maximum number of L-BFGS-B calls (default=100);

scaling: 1 to scale the constraints (default=1).

2.2 Instance syntax
A BC instance begins with some optional lines of comments, which are strings preceded by
a semicolon or by a asterisk:

<COMMENT> ::= ; <STRING> | * <STRING>

The first line gives the problem type : -1 for minimization, 1 for maximization. This can
be followed by other characters ignored by BiqCrunch.

<#MIN/MAX> ::= <-1> | <1> <STRING>

The next line defines the number of constraints, which is a positive integer such that
<INT>= mI +mE.

<#CONSTRAINTS> ::= <INT> | <INT> <STRING>

BiqCrunch - User’s Guide 10

http://www-lipn.univ-paris13.fr/BiqCrunch

Similar to the SDPA format, we define the number of blocks of the matrices of the input
file. As seen before, this line also admits characters after the definition.

<#BLOCKS> ::= <INT> | <INT> <STRING>

In the BC format an instance can have 1 or 2 blocks depending on the model: if the model
contains no inequality constraints, <INT> must be equal to 1; if the model has inequality
constraints <INT> must be equal to 2.
The third entry of the instance describes the size of the blocks of the matrices.

<SIZE> ::= <INT_1> | {<INT_1>} |
<INT_1>, -<INT_2> | {<INT_1>, -<INT_2>}

If the problem has no inequalities, then the size of the first block of the matrices (equal
to n+ 1) is provided (<INT_1>). If the problem contains inequalities then the size of the
second block must also be given (<INT_2>). It always starts with a minus before <INT_2>
to indicate that the values of the blocks are only on the diagonal of the matrix, and it is
equal to mI . In the next line, the right-hand side values of the constraints are given as a
sequence of values.

<RIGHT-HAND_SIDE> ::= <REAL_k> | <REAL_k> <RIGHT-HAND_SIDE>

The number of values must be equal to mI +mE and <REAL_k> must be the right-hand
side value of constraint k.

Finally, all the matrices that describe the objective function and the left-hand side of the
constraints must be provided. The first matrix corresponds to S0, the objective function.
Each line represents to a non-zero element of the matrix.

<OBJ_MATRIX_EL> ::= 0 1 <INT_1> <INT_2> <REAL>

where the first (0) and second number (1) respectively mean that this line concerns the
objective function matrix and the first block. <INT_1> and <INT_2> are the row and
the column of the non-zero element of the matrix and <REAL> is its value. <INT_1> and
<INT_2> must be greater than 0 and less or equal to n+ 1. Similarly, for each constraint k
the non-zero coefficients of the matrix Sk is given in sparse format:

<CONS_MATRIX_EL> ::= <INDEX_k> 1 <INT_1> <INT_2> <REAL>

where <INDEX_k> must be equal to k.
In the case constraint j is an inequality, one has to provide the value of the second block

of the matrix:

<INEQ_MATRIX_EL> ::= <INDEX_j> 2 <INT> <INT> <REAL>

where <INDEX_j> must be equal to j, <INT> ∈ {1, . . . ,mI} is the counter for the inequality,
and <REAL> is either 1.0 for a ≤ inequality or −1.0 for a ≥ inequality.

BiqCrunch - User’s Guide 11

http://www-lipn.univ-paris13.fr/BiqCrunch

2.3 Heuristics
BiqCrunch comes with specific heuristics for:

• generic problems;

• k-cluster problem;

• max-cut problem;

• max-independent-set problem.

One can also add their own heuristics. There are several folders problems/<PROBLEM> that
refer to different optimization problems and a problems/user directory where it is possible
to write a new heuristic. One can add new heuristics for BiqCrunch by simply creating
more problems/<PROBLEM> folders. To add a heuristic for BiqCrunch put a new heur.c
file inside the corresponding problem directory. An example of heur.c is provided in the
problems/user directory.

2.3.1 Generic heuristics
BiqCrunch offers generic heuristics which are useful when the user prefers not writing
their own specific heuristic. These generic heuristics can be used for any binary quadratic
problem and can be found in src/rounding.c (as well as the simple one-opt local search
algorithm). During the computation of the bound of the node (heur_2), and after the
evaluation of each node (heur_3), BiqCrunch uses the celebrated Goemans-Williamson
heuristic.
By adding the corresponding calls in heur.c file, the user can also use a variant of the

classical randomized rounding heuristic [9, 10] that rounds to 0 or 1 the variables according
to the probability provided by the fractional SDP solution. Indeed one has 0 ≤ xi ≤ 1
for any feasible solution of the SDP relaxation (see [8] for details about the relaxations
used). The rounding is done by comparing each xi to a fixed α = xj , for j = 1, . . . , n. Then
BiqCrunch tests if the resulting 0-1 vector is feasible for the combinatorial problem, and
updates the best current feasible solution if a better feasible solution is found. Afterwards,
BiqCrunch generates an additional 100 random binary vectors by comparing each fractional
xi to a different random value γ, and again updates the best current feasible solution if a
better feasible solution is found.

At the root node we generate a random vector of values in the interval [0, 1] and then we
apply the variant of randomized algorithm described before. To call or create new heuristics
for a specific problem, one has to modify the heur.c source file in the corresponding
subdirectory in problems (e.g., problems/max-cut/heur.c).

2.3.2 Heuristic timing
The heuristic function is called during the execution of the branch-and-bound algorithm:

1. at the beginning of the algorithm;

2. during the computation of the bound of each node of the branch-and-bound tree;

3. after the evaluation of each node of the branch-and-bound tree.

This information is saved in the function parameter heuristic_code, which can take three
different values:

BiqCrunch - User’s Guide 12

http://www-lipn.univ-paris13.fr/BiqCrunch

PRIMAL_HEUR: if the function is called at the beginning of the algorithm;

SDP_HEUR: if the function is called during the evaluation of the bound;

ROUNDING_HEUR: if the function is called after the evaluation of a node.
A simple use of this information is shown in the Code 2.1 taken from heur.c.

double BC_runHeuristic (Problem ∗P0 , Problem ∗P , BobNode ∗node , i n t ∗x ,
i n t heuristic_code)

{
double heur_val ;

switch (heuristic_code) {
case PRIMAL_HEUR :

heur_val = primalHeuristic (P0 , x) ;
break ;

case SDP_BOUND_HEUR :
heur_val = sdpBoundHeuristic (P0 , node , x) ;
break ;

case ROUNDING_HEUR :
heur_val = roundingHeuristic (P0 , node , x) ;
break ;

d e f a u l t :
printf (" Choosen␣ h e u r i s t i c ␣doesn ’ t ␣ e x i s t \n ") ;
exit (1) ;

}

// I f x i s f e a s i b l e , perform a l o c a l search around x f o r a b e t t e r s o l u t i o n
i f (params . local_search && BC_isFeasibleSolution (x)) {

local_search (node , x , &heur_val , P0) ;
}

return heur_val ;
}

Code 2.1: Use of the heuristic_code information

2.3.3 Additional functions
In addition to the heuristic function, the user must also define BC_allocHeuristic(. . .) and
BC_freeHeuristic(. . .) to allocate and free the global dynamic structure. These functions are
called by the solver at the beginning and at the end of the execution.

BiqCrunch also provides three useful functions for testing the solution produced with
the heuristic:
• int BC_isFeasibleSolution(int ∗sol) which allows the user to test if the solution in the

binary vector sol is feasible;

• double BC_evaluateSolution(int ∗sol) which returns the value of the objective function
computed with the solution sol, a binary vector of size problemSize.

• int update_best(int ∗xbest, int ∗xnew, double ∗best, Problem ∗P0) which allows the user to
check if the new solution xnew is feasible for problem P0, and to update, if needed,
xbest and best. This function is useful when several heuristics are sequentially used
(e.g., problems/k-cluster/heur.c).

BiqCrunch - User’s Guide 13

http://www-lipn.univ-paris13.fr/BiqCrunch

For each problem, a BC_FixVariables function can be defined by the user to take advantage
of particular constraints (see the Max-Independent-set example in Section 3). This function
must be defined in the corresponding problems/<PROBLEM>/heur.c file.

• void BC_FixVariables(BobNode ∗node, int ic, int xic). User can set the value of other
variables as soon as x[ic]=xic (i.e., 0 or 1) assuming that constraints in problem imply
it. The node structure contains the full information to set the values: node−>xfixed
is an indicator vector for the fixed variables, node−>sol.X contains the values of the
fixed variables. The parameters ic and xic are such that node−>xfixed[ic] = 1 and
node−>sol.X[ic] = xic.

2.3.4 Data structures
In this section we describe the data structures used in BiqCrunch heuristics, consisting of:

• the Problem and Inequality structures that contain all the information about the
problem instance (see Code 2.2);

• the Sparse structure that represents a matrix in sparse format (see Code 2.3);

• the BobNode structure which contains the information about a node of the branch
and bound tree (see Code 2.5);

• the BobSolution structure which contains a binary solution vector (see Code 2.4).

These structures can be modified in order to include additional information for a specific
problem (or to increase the maximum problem size).

typedef s t r u c t Problem {
double ∗Q ; // Ob j e c t i v e matrix in DENSE format
Sparse Qs ; // Ob j e c t i v e matrix in SPARSE format
i n t n ; // s i z e o f Q
Sparse ∗As ; // l i s t o f sparse matr ices f o r the i n e q u a l i t y c o n s t r a i n t s
double ∗a ; // r i gh t−hand−s i d e vec t o r o f i n e q u a l i t y c o n s t r a i n t s
i n t mA ; // number o f i n e q u a l i t y c o n s t r a i n t s
Sparse ∗Bs ; // l i s t o f sparse matr ices f o r the e q u a l i t y c o n s t r a i n t s
double ∗b ; // r i gh t−hand−s i d e vec t o r o f e q u a l i t y c o n s t r a i n t s
i n t mB ; // number o f e q u a l i t y c o n s t r a i n t s
i n t max_problem ; // 1 i f i t i s a max problem , and 0 i f i t i s a min problem

} Problem ;

typedef s t r u c t Inequality {
i n t i ;
i n t j ;
i n t k ;
i n t type ;
double value ;
double y ;

} Inequality ;

Code 2.2: Problem data structure

BiqCrunch - User’s Guide 14

http://www-lipn.univ-paris13.fr/BiqCrunch

typedef s t r u c t Sparse {
i n t ∗i ;
i n t ∗j ;
double ∗val ;
i n t nnz ;

} Sparse ;

Code 2.3: Data structure of a sparse matrix

/∗
∗ Maximum number o f v a r i a b l e s
∗/

#de f i n e NMAX 1024

/∗
∗ So lu t i on o f the problem .
∗ This s t r u c t u r e d e f i n e s the content o f a s o l u t i o n o f the problem .
∗/

typedef s t r u c t BobSolution {
/∗
∗ Vector X.
∗ Binary vec to r t h a t s t o r e s the s o l u t i o n o f the branch−and−bound
∗ a l gor i thm
∗/

i n t X [NMAX] ;
} BobSolution ;

Code 2.4: Data structure of a solution

typedef s t r u c t BobNode {
/∗
∗ Node in format ion .
∗
∗/

BobTNdInfo BobNdInfo ; // (i n t Size , i n t Off)
/∗
∗ Number o f f i x e d v a r i a b l e s .
∗ In t e g e r v a r i a b l e t h a t s t o r e s the number o f f i x e d v a r i a b l e s in the
∗ curren t node .
∗/

i n t level ;
i n t xfixed [NMAX] ;
BobSolution sol ;
double fracsol [NMAX] ;
BobTPri Pri ; // (i n t Eval , i n t Depth)

} BobNode ;

Code 2.5: Branch-and-bound tree node data structure

BiqCrunch - User’s Guide 15

http://www-lipn.univ-paris13.fr/BiqCrunch

3 Examples

3.1 Max-Cut problem
Given a graph G = (V,E) with edge weights wij for ij ∈ E and wij = 0 for ij 6∈ E,
Max-Cut is the problem of finding a bipartition of the nodes V such that the sum of the
weights of the edges across the bipartition is maximized. Let n = |V | be the cardinality of
V ; we can state Max-Cut as

maximize
∑
i<j

wij

(1− xixj

2

)
subject to x ∈ {−1, 1}n.

We can rewrite the problem of Max-Cut as

maximize 1
4x

TQx

subject to x ∈ {0, 1}n.

where Q is the Laplacian matrix of the weighted graph G.

3.1.1 Max-Cut heuristic
With BiqCrunch we provide the Goemans-Williamson random hyperplane algorithm [3].
The heuristic is run after each node evaluation to get a feasible solution.

3.1.2 Conversion tools
To simplify the creation of the BC instances we provide some tools to convert standard
instances in sparse format to the BC format. All the tools can be downloaded from the
BiqCrunch download page.
From Biq to BiqCrunch
To convert binary quadratic problems (e.g., [1]) to a standard BC instance we provide the
qp2bc conversion tool. This tool converts an instance in a standard sparse format to a
valid instance for BiqCrunch. This tool is written in Python and can be used directly from
command line:
$./qp2bc.py <BIQ_INSTANCE> > <BC_INSTANCE>

From Mac to BiqCrunch
To convert Max-Cut problems to a standard BC instance we provide the mc2bc conversion
tool. This tool converts an instance in a standard sparse format to a valid instance for
BiqCrunch. This tool is written in Python and can be used directly from command line:
$./mc2bc.py <MC_INSTANCE> > <BC_INSTANCE>

BiqCrunch - User’s Guide 16

http://www-lipn.univ-paris13.fr/BiqCrunch/Download
http://www-lipn.univ-paris13.fr/BiqCrunch

3.2 k-cluster problem
Given a graph G = (V,E) the k-cluster problem consists of determining a subset S ⊆ V of
k vertices such that the sum of the weights of the edges between vertices in S is maximized.

Letting n = |V | denote the number of vertices, and wij denote the edge weight for ij ∈ E
and wij = 0 for ij /∈ E, the problem can be modeled as the following 0-1 quadratic problem:

maximize 1
2x

TWx

subject to
∑

i

xi = k, x ∈ {0, 1}n.

where W = (wij)ij is the weighted adjacency matrix of the graph G.

3.2.1 k-cluster heuristic
We use two types of heuristics to find a cluster with exactly k nodes. First, for the initial
feasible point (before running the Branch-and-Bound), we use the classical greedy heuristic,
since it gives very good feasible solutions: we remove vertices one at a time from the graph
by choosing the vertex with the smallest degree (or sum of the weights over the adjacent
vertices) at each step. Second, during the evaluation of the bound and after running the
bounding procedure on a subproblem having k′ nodes added to the cluster, we add the
remaining k − k′ nodes having the largest fractional values xi in the SDP solution. More
details can be found in [5]. Finally, to improve the solution we use a two-opt algorithm:
swap two vertices (one in the k-cluster with one outside) until no progress is made. Finally,
we also call the generic heuristic of BiqCrunch and keep the best solution. For further
details see the problems/k-cluster/heur.c file.

3.2.2 k-cluster instances and conversion
To obtain BiqCrunch input files for the k-cluster problem you can simply use the conversion
tool kc2bc which can convert instances from a standard sparse format and from the format
used in [6] to BC. When using the conversion tool, weights can be ignored with a simple flag
(thus the graph will be considered unweighted). Note that the conversion tool also adds
redundant constraints to the instance to improve the bound obtained during the bounding
procedure [11].

3.3 Maximum independent set problem
Consider an undirected graph G = (V,E), where V = {1, ..., n} and |E| = m. A weight
wi ∈ R is assigned to each vertex i ∈ V .
An independent set is a set S ⊆ V such that no two vertices in S are joined by an edge in
E. We seek an independent set of maximum total weight in G.

maximize ∑n
i=1 wixi

subject to xixj = 0, ∀ij ∈ E,
x ∈ {0, 1}n.

For this problem, we take advantage of the constraints by fixing several nodes at
the same time in BiqCrunch when a decision variable is set to 1. Indeed, if (ic, j) is
an edge of G and xic = 1 then xj = 0. The function BC_FixVariable (defined in
problems/max-indep-set/heur.c) is used to fix additional variables whenever one variable

BiqCrunch - User’s Guide 17

http://www-lipn.univ-paris13.fr/BiqCrunch

is fixed. Note that in problems/generic/heur.c the body of this function is empty. Of
course, for other problems with particular constraints, one may modify this function (as is
done for the maximum independent set problem) to decrease the size of the subproblems.

void BC_FixVariables (BobNode ∗node , i n t ic , i n t xic) {
i n t j ;

i f (xic == 1) {
f o r (j = 0 ; j < BobPbSize ; j++) {

i f (j != ic)
i f (getSparseAdjacencyMatrixValue (M_adj , ic , j) == 1 .) {
// (ic , j) b e l ong s to E so X[i c] = 1 => X[j] = 0

i f (! node−>xfixed [j]) {
node−>xfixed [j] = 1 ;
node−>sol . X [j] = 0 ;
}

}
}

}
}

Code 3.1: Use of the BC_FixVariable for the MIS problem

3.3.1 Maximum independent set heuristics
In addition to the Goemans-Williamson heuristic, two standard heuristics are provided in
the corresponding heur.c file. First, in order to obtain an initial solution before we start the
Branch-and-Bound method, we go through the vertices of G from lowest degree to highest
degree and add a vertex to the independent set if it has no neighbours in the set. Second,
during the evaluation of the bound and after running the bounding procedure, follow the
same method as the previous heuristic by trying to add each vertex to the independent set
given a different order. This time, the order is not actually given by the increasing degree
of the vertices but by the fractional solution provided by BiqCrunch (sort the vertices by
decreasing fractional value).

BiqCrunch - User’s Guide 18

http://www-lipn.univ-paris13.fr/BiqCrunch

Bibliography

[1] Alain Billionnet and Sourour Elloumi. Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Mathematical Programming,
109:55–68, 2007. 10.1007/s10107-005-0637-9.

[2] Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory
algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208,
September 1995.

[3] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM,
42(6):1115–1145, November 1995.

[4] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Improved semidefinite bounding
procedure for solving max-cut problems to optimality. Mathematical Programming,
143(1-2):61–86, 2014.

[5] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Computational results of a
semidefinite branch-and-bound algorithm for k-cluster. Computers and Operations
Research, 66:153 – 159, 2016.

[6] Amélie Lambert. A library of k-cluster problems. http://cedric.cnam.fr/
~lamberta/Library/k-cluster.html. CNAM-CEDRIC.

[7] Bertrand Le Cun, Catherine Roucairol, and The Pnn Team. Bob: a unified platform
for implementing branch-and-bound like algorithms. Technical report, Laboratoire
Prism, 1995.

[8] Jérôme Malick and Frédéric Roupin. On the bridge between combinatorial optimization
and nonlinear optimization: a family of semidefinite bounds for 0-1 quadratic problems
leading to quasi-Newton methods. Mathematical Programming, 140(1):99–124, 2013.

[9] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: approx-
imating packing integer programs. J. Comput. Syst. Sci., 37(2):130–143, October
1988.

[10] Prabhakar Raghavan and Clark D. Tompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374,
December 1987.

[11] Frédéric Roupin. From linear to semidefinite programming: An algorithm to obtain
semidefinite relaxations for bivalent quadratic problems. Journal of Combinatorial
Optimization, 8:469–493, 2004. 10.1007/s10878-004-4838-6.

BiqCrunch - User’s Guide 19

http://cedric.cnam.fr/~lamberta/Library/k-cluster.html
http://cedric.cnam.fr/~lamberta/Library/k-cluster.html
http://www-lipn.univ-paris13.fr/BiqCrunch

	BiqCrunch
	Installation
	Usage
	Conversion tools
	Input format
	Example

	Output

	Advanced usage
	BiqCrunch Parameters
	Instance syntax
	Heuristics
	Generic heuristics
	Heuristic timing
	Additional functions
	Data structures

	Examples
	Max-Cut problem
	Max-Cut heuristic
	Conversion tools

	k-cluster problem
	k-cluster heuristic
	k-cluster instances and conversion

	Maximum independent set problem
	Maximum independent set heuristics

